Звезды физическая природа звезд реферат

Физическая природа звезд

Открытие звёзд, видимый блеск которых со временем меняется, привело к специальным обозначениям. Они обозначаются прописными латинскими буквами, за которыми следует название созвездия в родительном падеже. Но первая переменная звезда, обнаруженная в каком-то созвездии, обозначается не буквой A. Отсчёт ведётся от буквы R. Следующая звезда обозначается буквой S и так далее. Когда все буквы алфавита исчерпаны, начинается новый круг, то есть после Z снова используется A. При этом буквы могут удваиваться, например «RR». «R Льва» означает, что это первая открытая переменная звезда в созвездии Льва.

Содержание работы
Файлы: 1 файл

реферат ПО КСЕ.docx

Федеральное агенство по образованию

Государственное образовательное учреждение высшего профессионального образования

«Челябинский государственный педагогический университет» (ГОУ ВПО «ЧГПУ»)

РЕФЕРАТ ПО КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

Тема: Физическая природа звезд

Выполнила: Рапохина Т. И.

Проверила: Баркова В.В.

Глава 1. Что такое звезда………………………………………………………4

    1. Сущность звезд…………………………………………………………….. .4
    2. Рождение звезд………………………………………………………………7

    Глава 2. Физическая природа звезд…………………………………………..24

    2.3 Спектры и химический состав звезд…………………………….…… ……27

    2.4 Средние плотности звезд………………………………………………….28

    . Ничего нет более простого, чем звезда.

    Испокон веков Человек старался дать название предметам и явлениям, которые его окружали. Это относится и к небесным телам. Сначала названия получили самые яркие, хорошо видимые звёзды, с течением времени – и другие.

    Открытие звёзд, видимый блеск которых со временем меняется, привело к специальным обозначениям. Они обозначаются прописными латинскими буквами, за которыми следует название созвездия в родительном падеже. Но первая переменная звезда, обнаруженная в каком-то созвездии, обозначается не буквой A. Отсчёт ведётся от буквы R. Следующая звезда обозначается буквой S и так далее. Когда все буквы алфавита исчерпаны, начинается новый круг, то есть после Z снова используется A. При этом буквы могут удваиваться, например «RR». «R Льва» означает, что это первая открытая переменная звезда в созвездии Льва.

    Звезды очень интересны для меня, поэтому я решила написать реферат именно на эту тему.

    Звезды — это далекие солнца, по этому, изучая природу звезд, мы будем сравнивать их физические характеристики с физическими характеристиками Солнца.

    Глава 1. ЧТО ТАКОЕ ЗВЕЗДА

    1.1 СУЩНОСТЬ ЗВЕЗД

    При внимательном разглядывании звезда представляется светящейся точкой, иногда с расходящимися лучами. Явление лучей связано с особенностью зрения и не имеет отношения к физической природе звезды.

    Любая звезда — это удаленное от нас солнце. Ближайшая из звезд — Проксима — находится в 270000 раз дальше от нас, чем Солнце. Самая яркая звезда неба Сириус в созвездии Большой Пёс, расположенная на расстоянии 8×1013км, имеет примерно такую же яркость, как и 100-ваттная электрическая лампочка на расстоянии 8 км (если не учитывать ослабление света в атмосфере). Но для того, чтобы лампочка была видна под таким же углом, под которым виден диск далёкого Сириуса, ее диаметр должен быть равен 1 мм!

    При хорошей видимости и нормальном зрении над горизонтом одновременно можно увидеть около 2500 звёзд. Имеют собственные имена 275 звезд, например, Алголь, Альдебаран, Антарес, Альтаир, Арктур, Бетельгейзе, Вега, Гемма, Дубхе, Канопус (вторая по яркости звезда), Капелла, Мицар, Полярная (путеводная звезда), Регул, Ригель, Сириус, Спика, Сердце Карла, Тайгета, Фомальгаут, Шеат, Этамин, Электра и др.

    Вопрос, сколько звезд в данном созвездии, лишен смысла, так как ему недостает конкретности. Для ответа необходимо знать остроту зрения наблюдателя, время, когда ведутся наблюдения (от этого зависит яркость неба), высоту созвездия (у горизонта трудно обнаружить слабую звезду из-за атмосферного ослабления света), место наблюдения (в горах атмосфера чище, прозрачнее — поэтому видно больше звезд) и т.д. В среднем на одно созвездие приходится примерно 60 звезд, наблюдаемых невооруженным глазом (у Млечного Пути и в больших созвездиях — больше всего). Например, в созвездии Лебедь можно насчитать до 150 звёзд (область Млечного Пути); а в созвездии Лев — только 70. В небольшом созвездии Треугольник видно всего 15 звезд.

    Если же учитывать звезды до 100 раз более слабые, чем самые слабые звезды, ещё различимые зорким наблюдателем, то в среднем на одно созвездие будет приходится около 10000 звезд.

    Звезды различаются не только по их яркости, но и по цвету. Например, Альдебаран (созвездие Телец), Антарес (Скорпион), Бетельгейзе (Орион) и Арктур (Волопас) — красные, а Вега (Лира), Регул (Лев), Спика (Дева) и Сириус (Большой Пёс) — белые и голубоватые.

    Звезды мерцают. Это явление хорошо заметно у горизонта. Причина мерцания — оптическая неоднородность атмосферы. Прежде, чем попасть в глаз наблюдателя, свет звезды пересекает в атмосфере множество мелких неоднородностей. По своим оптическим свойствам они похожи на линзы, концентрирующие или рассеивающие свет. Непрерывное перемещение таких линз и является причиной мерцания.

    Причину изменения цвета при мерцании поясняет рис.6, из которого видно, что синий (с) и красный (к) свет от одной и той же звезды перед тем, как попасть в глаз наблюдателя (О), проходит в атмосфере неравные пути. Это — следствие неодинакового преломления в атмосфере синего и красного света. Несогласованность колебаний яркости (вызванных разными неоднородностями) приводит к разбалансировке цветов.

    В отличие от общего мерцания, цветовое можно заметить только у звезд близких к горизонту.

    У некоторых звезд, названных переменными звездами, изменения яркости происходят гораздо более медленно и плавно, чем при мерцании, рис. 7. Например, звезда Алголь (Дьявол) в созвездии Персей меняет свою яркость с периодом 2,867 суток. Причины “переменности” звезд многообразны. Если две звезды обращаются вокруг общего центра масс, то одна из них может периодически закрывать другую (случай Алголя). Кроме того, некоторые звезды меняют яркость в процессе пульсации. У других звезд яркость изменяется при взрывах на поверхности. Иногда взрывается вся звезда (тогда наблюдается сверхновая звезда, светимость которой в миллиарды раз превосходит солнечную).

    Движения звезд друг относительно друга со скоростями в десятки километров в секунду приводят к постепенному изменению звездных узоров на небе. Однако продолжительность жизни человека слишком мала, чтобы такие изменения удалось заметить при наблюдениях невооружённым глазом.

    1.2 РОЖДЕНИЕ ЗВЕЗД

    Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.

    Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газово-пылевой среды, служит расположение групп заведомо молодых звезд (так называемых «ассоциаций») в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных «радио изображений» некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не будем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии «зоны Н Н», т. е. облака ионизованного межзвездного газа. Причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд — объектов заведомо молодых.

    Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеоров, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях» перейти в излучение. Как мы увидим, ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени.

    Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов).

    В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратится в гелий, то выделившееся количество энергии составит примерно 10 52 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода.

    Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газово-пылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие протозвезды наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул. Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения. Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, (что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.

    При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана — Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр —светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.

    В дальнейшем протозвезда продолжает сжиматься. Ее разморы становятся меньше, а поверхностная температура растет вследствие чего спектр становится все более ранним. Таким образом, двигаясь по диаграмме "спектр — светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для тою, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой.

    Великолепные колонны, состоящие главным образом из газообразного водорода и пыли дают начало новорождённым звёздам внутри туманности Орла.

    Источник

    

    Физическая природа звезд. Рождение звезды

    Космос — звезды и планеты, галактики и туманности — огромный загадочный мир, понять который с древних времен хотят люди. Сначала астрология, а затем и астрономия стремились познать законы протекающей на его просторах жизни. Сегодня можно смело говорить, что нам известно многое, но внушительная часть процессов и явлений имеет лишь предположительное объяснение. Физическая природа звезд — один из широко обсуждаемых вопросов в астрономии. Сегодня в целом картина ясна, однако остаются и пробелы в наших знаниях о небесных светилах.

    физическая природа звезд

    Бесчисленное количество

    Любая звезда представляет собой газовый шар, постоянно испускающий свет. Силы гравитации и внутреннего давления предотвращают его разрушение. Физическая природа звезд такова, что в ее недрах постоянно протекают термоядерные реакции. Они прекращаются лишь на определенных стадиях развития светила, о чем будет сказано ниже.

    яркая звезда

    При хороших погодных условиях и отсутствии искусственного освещения на небе можно разглядеть до 3000 тысяч звезд в каждом полушарии. Однако это лишь малая часть того количества, что наполняет космос. Самая близкая к нам звезда — это Солнце. Изучая его поведение, ученые очень многое узнают о светилах вообще. Наиболее близкая звезда вне Солнечной системы — Проксима Центавра. Ее отделяет от нас примерно 4,2 световых года.

    Параметры

    Наука о звездах знает сегодня достаточно, чтобы понимать, как влияют на их эволюцию основные характеристики. Наиболее важными параметрами для любого светила являются масса и состав. Они определяют продолжительность существования, особенности прохождения разных этапов и все прочие характеристики, например, спектр, размер, блеск. Однако в силу огромного расстояния, отделяющего нас от всех звезд, кроме Солнца, не всегда есть возможность получить точные данные о них.

    Масса

    В современных условиях более или менее точные данные о массе звезд можно получить только в том случае, если они являются компаньонами двойной системы. Однако и такие вычисления дают достаточно высокую погрешность — от 20 до 60%. Для остальных звезд масса вычисляется косвенно. Ее выводят из различных известных соотношений (например, масса — светимость).

    Физическая природа звезд с изменением этого параметра остается прежней, но многие процессы начинают течь в несколько иной плоскости. Масса непосредственно влияет на тепловое и механическое равновесие всего космического тела. Чем она больше, тем значительнее газовое давление и температура в центре звезды, а также количество вырабатываемой термоядерной энергии. Для поддержания теплового равновесия светило должно излучить столько же, сколько образовалось в его недрах. Для этого происходит изменение диаметра звезды. Подобные изменения продолжаются, пока не установятся оба типа равновесия.

    Химический состав

    Основа звезды — это водород и гелий. Кроме них, в состав в разном соотношении входят и более тяжелые элементы. «Полный набор» свидетельствует о возрасте и поколении светила, указывает на некоторые другие его свойства.

    Процентное содержание более тяжелых элементов крайне мало, однако именно они влияют на скорость протекания термоядерного синтеза. Его замедление и ускорение отражается на яркости, цвете и продолжительности жизни светила. Знание химического состава звезды позволяет без труда определить время ее образования.

    Рождение звезды

    рождение звезды

    Процесс формирования светил еще недостаточно изучен. Полному пониманию картины мешают огромные расстояния и невозможность непосредственного наблюдения. Однако сегодня существует общепринятая концепция, описывающая рождение звезды. Кратко остановимся на ней.

    По-видимому, светила образуются из межзвездного газа, сжимающегося под действием собственной гравитации. При этом энергия тяготения преобразуется в тепло — растет температура сформировавшейся глобулы. Завершается этот процесс, когда ядро разогревается до нескольких миллионов Кельвинов и запускается образование более тяжелых, чем водород, элементов (нуклеосинтез). Такой звезда остается достаточно длительное время, располагаясь на Главной последовательности диаграммы Герцшпрунга-Рассела.

    Красный гигант

     наука о звездах

    Следующий этап эволюции начинается после исчерпания ядром всего топлива. Весь водород в центре звезды превращается в гелий и его горение продолжается во внешних оболочках светила. Космическое тело начинает изменяться. Увеличивается его светимость, внешние слои расширяются, а внутренние, наоборот, сжимаются, временно снижается яркость, падает температура поверхности. Звезда сходит с Главной последовательности и становится красным гигантом. В таком состоянии светило проводит гораздо меньшее время своей жизни, чем на предыдущей стадии.

    Необратимые изменения

    Вскоре (по космическим меркам) ядро снова начинает сжиматься, не выдерживая собственного веса. Возрастающая температура при этом стимулирует начало синтеза из гелия более тяжелых элементов. На таком топливе звезда также может просуществовать достаточно долго. Дальнейшие события зависят от первоначальных параметров светила. Массивные звезды проходят еще несколько стадий, когда в качестве топлива начинает выступать сначала углерод (образовался из гелия), а затем кремний (образовался из углерода). В результате переработки последнего образуется железо. К этому моменту наступает завершающая стадия жизни звезды, когда она может преобразоваться в нейтронную. Однако большинство светил после выгорания всего водорода в красном гиганте превращаются в белых карликов.

     космос звезды и планеты

    Не такие уж новые

    Нужно заметить, что не всякая яркая звезда, внезапно загоревшаяся на небе, является «новорожденной». Как правило, это так называемая переменная — светило, чей блеск со временем изменяется. Объекты, обозначаемые в астрономии как «новая звезда», также не относятся к только что появившимся телам. Они относятся к катаклизмическим переменным, достаточно резко меняющим свой блеск. Однако сверхновые их в этом значительно опережают: амплитуда изменения у них может составлять до 9 величин. Впрочем, оба эти типа светил — тема для отдельных статей.

    новая звезда

    Физическая природа звезд во многом сегодня понятна, хотя нет гарантии, что новые данные не опровергнут устоявшиеся теории. Принятые гипотезы и идеи доминируют в науке лишь до того момента, пока могут объяснить наблюдаемые феномены. Каждая новая звезда, обнаруженная на просторах Вселенной, выявляет нерешенные задачи астрономии. Существующее понимание космических процессов далеко не полно, в нем есть достаточно обширные пробелы, касающиеся, например, процесса формирования черных дыр, сверхновых и так далее. Однако, независимо от состояния теории, небесные светила продолжают радовать нас по ночам. В сущности, яркая звезда не перестанет быть прекрасной, если мы полностью познаем ее природу. Или же, наоборот, прекратим всякое изучение.

    Источник

    Звезды физическая природа звезд реферат

    Разумеется, у любого тела в нашем мире есть определённый набор параметров, который отличает его от других тел. Собственно говоря, космические объекты не исключение.
    Вы знаете, какие-либо характеристики звёзд? Конечно, у них много общего между собой, но в то же время каждая, можно сказать, уникальна. Учёные на протяжении долгого времени изучали и следили за светилами и их жизнью. На основании многолетних исследований удалось выявить основные физические характеристики звёзд и их взаимосвязь.

    Звёзды в космосе

    Звёзды в космосе

    Итак, основные характеристики звезд:

    • светимость;
    • вес и масса;
    • размер (радиус);
    • температура поверхности.

    Светимость

    Говоря про основные характеристики звезд, светимость, возможно, является самой главной. Поскольку данное свойство позволяет даже простому наблюдателю выделить на небе звёздное тело. А вот для опытного астронома этот показатель позволяет определить к какому типу принадлежит тело.
    На самом деле, светимость отражает связь между физическими и химическими характеристиками звезд.

    Сириус (самая яркая звезда)

    Сириус (самая яркая звезда)

    Температура

    Температура звёздного тела зависит от его химического состава, который, как известно, со временем может меняться. Соответственно, вместе с ним изменяются и процессы, происходящие внутри. Что, в свою очередь, влияет на другие свойства и параметры объекта.
    По законам термодинамики можно вычислить какая температура поверхности у светила. Для этого измеряют длину волны, что позволяет определить цвет звезды и её спектральный класс.

    Наос (самая горячая звезда)

    Наос (самая горячая звезда)

    Массивность звезд

    Кроме этого, все светила различаются по массе. Но по данному показателю классификация проще. Стоит отметить, что масса звезд рассчитывается по отношению к Солнечной массе. Так, на момент рождения различают светила малой, средней и большой массой.
    Что интересно, массивных звёзд в нашей Вселенной намного меньше, чем других.

    Звезда R136a1 из туманности Тарантул (Одна из самых массивных звёзд)

    Звезда R136a1 из туманности Тарантул (Одна из самых массивных звёзд)

    Размер звезд

    Наконец, размер, а если точнее радиус звёзд, имеет существенные отличия. И что важно, радиусы звезд меняются. Так как в процессе эволюции изменяется химический состав, от которого зависит дальнейшая судьба объекта. Проще говоря, возможно либо расширение, либо сжатие, что соответственно приведёт к увеличению или уменьшению размера.

    UY Щита (Самая большая звезда)

    UY Щита (Самая большая звезда)

    Характеристика звезд и их взаимосвязь

    Между прочим, все главные характеристики звезд тесно связаны между собой, и напрямую влияют на ход звёздной эволюции. Наиболее точно это описано в диаграмме Герцшпрунга-Рассела.

    Диаграмма Герцшпрунга - Рассела

    Диаграмма Герцшпрунга — Рассела

    Как видно, светила располагаются на диаграмме в определённой последовательности.

    Безусловно, характеристика и описание звезд не ограничиваются описанными величинами. Поскольку существуют и другие отличительные черты. Например, расстояние или возраст.
    При изучении и рассмотрении отдельно взятого звёздного тела можно многое узнать про него. Ведь звёзды, как люди, их много, но каждый уникальный и неповторимый, у каждого свой жизненный путь.

    Источник

    Основные характеристики звёзд

    Разумеется, у любого тела в нашем мире есть определённый набор параметров, который отличает его от других тел. Собственно говоря, космические объекты не исключение.
    Вы знаете, какие-либо характеристики звёзд? Конечно, у них много общего между собой, но в то же время каждая, можно сказать, уникальна. Учёные на протяжении долгого времени изучали и следили за светилами и их жизнью. На основании многолетних исследований удалось выявить основные физические характеристики звёзд и их взаимосвязь.

    Звёзды в космосе

    Звёзды в космосе

    Итак, основные характеристики звезд:

    • светимость;
    • вес и масса;
    • размер (радиус);
    • температура поверхности.

    Светимость

    Говоря про основные характеристики звезд, светимость, возможно, является самой главной. Поскольку данное свойство позволяет даже простому наблюдателю выделить на небе звёздное тело. А вот для опытного астронома этот показатель позволяет определить к какому типу принадлежит тело.
    На самом деле, светимость отражает связь между физическими и химическими характеристиками звезд.

    Сириус (самая яркая звезда)

    Сириус (самая яркая звезда)

    Температура

    Температура звёздного тела зависит от его химического состава, который, как известно, со временем может меняться. Соответственно, вместе с ним изменяются и процессы, происходящие внутри. Что, в свою очередь, влияет на другие свойства и параметры объекта.
    По законам термодинамики можно вычислить какая температура поверхности у светила. Для этого измеряют длину волны, что позволяет определить цвет звезды и её спектральный класс.

    Наос (самая горячая звезда)

    Наос (самая горячая звезда)

    Массивность звезд

    Кроме этого, все светила различаются по массе. Но по данному показателю классификация проще. Стоит отметить, что масса звезд рассчитывается по отношению к Солнечной массе. Так, на момент рождения различают светила малой, средней и большой массой.
    Что интересно, массивных звёзд в нашей Вселенной намного меньше, чем других.

    Звезда R136a1 из туманности Тарантул (Одна из самых массивных звёзд)

    Звезда R136a1 из туманности Тарантул (Одна из самых массивных звёзд)

    Размер звезд

    Наконец, размер, а если точнее радиус звёзд, имеет существенные отличия. И что важно, радиусы звезд меняются. Так как в процессе эволюции изменяется химический состав, от которого зависит дальнейшая судьба объекта. Проще говоря, возможно либо расширение, либо сжатие, что соответственно приведёт к увеличению или уменьшению размера.

    UY Щита (Самая большая звезда)

    UY Щита (Самая большая звезда)

    Характеристика звезд и их взаимосвязь

    Между прочим, все главные характеристики звезд тесно связаны между собой, и напрямую влияют на ход звёздной эволюции. Наиболее точно это описано в диаграмме Герцшпрунга-Рассела.

    Диаграмма Герцшпрунга - Рассела

    Диаграмма Герцшпрунга — Рассела

    Как видно, светила располагаются на диаграмме в определённой последовательности.

    Безусловно, характеристика и описание звезд не ограничиваются описанными величинами. Поскольку существуют и другие отличительные черты. Например, расстояние или возраст.
    При изучении и рассмотрении отдельно взятого звёздного тела можно многое узнать про него. Ведь звёзды, как люди, их много, но каждый уникальный и неповторимый, у каждого свой жизненный путь.

    Источник

Adblock
detector