Урок по теме quot Воздушное питание растений Фотосинтез quot план конспект урока по биологии 6 класс на тему

Биология в лицее

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

Фотосинтез. (Воздушное питание растений)

Виртуальные лабораторные работы и опыты по теме "Фотосинтез":

Корневое питание дает растению только минеральные соли и воду. Органические вещества и заключенную в них энергию растение получает в процессе фотосинтеза (от греч. фотос – «свет» и синтезис – «соединение»).

Фотосинтез. (Анимация)

Фотосинтез протекает в хлоропластах. В ходе этого процесса за счет энергии солнечного света растение с помощью зеленого хлорофилла листьев образует необходимые ему органические вещества из неорганических – углекислого газа и воды. Так как основным поставщиком углекислого газа для фотосинтеза является воздух, то этот способ получения растением органических веществ называют воздушным питанием.

Схема процесса фотосинтеза. (Анимация)

Зеленый лист – специализированный орган воздушного питания.

Благодаря плоской форме листовой пластинки лист имеет большую поверхность соприкосновения с воздушной средой и солнечным светом. Присутствие же в мякоти листа мелких, но многочисленных хлоропластов с зеленым пигментом – хлорофиллом создает огромную фотосинтезирующую поверхность, превращая таким образом лист в могучую фабрику образования органических веществ.

Доказать, что зеленое растение только на свету образует органические вещества, можно простым опытом. Зеленое растение, например примулу или пеларгонию зональную, помещают в темный шкаф. Через 2-3 дня у этого растения черной бумагой или фольгой затемняют часть одного листа и ставят растение на свет. Через 8-10 часов срезают этот лист, снимают с него затемняющие пластинки бумаги. Оказывается, внешне лист никак не изменился. Но после его обесцвечивания (кипячением в спирте разрушается хлорофилл) и последующей обработки раствором йода можно увидеть, что незатемненная часть листа, содержавшая крахмал, посинела, а бывшая затемненной часть листа приобрела желтый цвет йода. Это свидетельствует о том, что здесь крахмал не образовался, так как клетки листа не получали световой энергии.

Фотосинтез – процесс, в котором зеленое растение из неорганических веществ (углекислого газа и воды) с использованием энергии солнечного света образует органические вещества – углеводы (преимущественно сахара), а также кислород.

Фотосинтез всегда поддерживается корневым питанием – поглощением из почвы воды и минеральных солей. Без воды фотосинтез не происходит.

В среднем растения поглощают около 55 % энергии солнечных лучей, а на фотосинтез расходуется только 1,5-2 % поглощенной энергии. Это очень мало, но и такое количество обеспечивает жизнь всем организмам на Земле.

Весь сложный поэтапный процесс фотосинтеза идет в хлоропластах бесперебойно, пока зеленые листья получают солнечную энергию. Образовавшиеся в хлоропластах продукты фотосинтеза поступают в цитоплазму, где с помощью ферментов превращаются в сахара. Полученные органические вещества (преимущественно сахара) по ситовидным трубкам луба оттекают из листьев ко всем частям растения: к почкам, генеративным органам. Но большая их часть передвигается по стеблю вниз к корням, где принимает участие вместе с минеральными солями в образовании белков и жиров, которые откладываются про запас.

Пути передвижения веществ в процессе питания. (Анимация)

Для фотосинтеза обязательно нужен углекислый газ, поступающий в лист вместе с воздухом через устьица, и вода, приходящая по сосудам из корня.

Таким образом, в процессе воздушного питания растения поглощают неорганические вещества и с помощью энергии света и хлорофилла образуют органические вещества. Организмы, способные самостоятельно синтезировать органические вещества из неорганических, называют самопитающимися, или автотрофными (от греч. аутос – «сам», трофе – «питание»). Автотрофный тип питания – главная особенность растительного организма.

Не все организмы обладают такой способностью. Многие из них не способны синтезировать органические вещества из неорганических, а получают их с пищей в виде готовых органических соединений. Такие организмы называют гетеротрофными (от греч. гетерос – «другой», трофе – «питание»). Все животные, грибы, большинство бактерий и человек являются гетеротрофами. Они питаются готовыми органическими веществами, созданными автотрофами – зелеными растениями. Вот почему процесс фотосинтеза имеет огромное значение не только для растений, но для всей жизни на Земле.

Зеленые растения – автотрофы: создавая органические вещества, запасают в них солнечную энергию и делают ее доступной для других организмов.

Интерактивный урок-тренажёр. (Пройдите все страницы и выполните все задания урока)

Источник

Bio-Lessons

Фотосинтез (от лат. «фото» -свет, «синтез» — соединение) — основа воздушного питания растений. При фотосинтезе зеленые растения извлекают энергию из солнечного света и создают органические вещества.

Как же осуществляется фотосинтез?

Через устьичные щели в лист поступает углекислый газ. При попадании солнечных лучей на поверхность листа в его хлоропластах происходит сложный процесс: из углекислого газа и воды, всасываемой корнями, образуется органическое вещество — сахар (глюкоза). При этом выделяется кислород. Частично он используется растениями для дыхания, а излишки поступают в воздух также через устьица. Сахар затем превращается в крахмал. Крахмал в воде не растворяется. Образование сахара на свету при участии воды и углекислого газа происходит только в хлоропластах и только за счет энергии солнечного света.

Следовательно, процесс образования в хлоропластах на свету органических веществ из воды и углекислого газа с выделением кислорода называется фотосинтезом (рис.1).

Рис.1 Процесс фотосинтеза

История открытия фотосинтеза

Первые опыты по изучению питания растений провел в 1630 г. голландский врач Ян Батист ван Гельмонт. Он доказал, что растения не получают органические вещества в готовом виде из почвы, а сами образуют их (рис.2)

Рис.2 Опыт Яна Батиста ван Гельмонта

А швейцарский естествоиспытатель Жан Сенебье доказал, что растения используют углекислый газ.

Русский ученый К. А. Тимирязев (1843-1920) впервые описал роль хлорофилла (пигмент, который находится в хлоропластах) в фотосинтезе. Он назвал фотосинтез космическим процессом. Растения используют космическую энергию Солнца. Жизнь как явление существует на нашей планете, только благодаря фотосинтезу, обеспечивающему питанием и кислородом все живое. Может, благодаря фотосинтезу наша планета единственная в Космосе, населенная живыми существами?

Опыт доказывающий образование крахмала в листьях

Доказать процесс образования крахмала в листьях можно путем постановки простого опыта (рис.3)

Рис.3 Образование крахмала в зеленых листьях на свету

Комнатное растение, желательно пеларгонию или примулу, хорошо поливают и ставят в темное место на 2-3 дня. За это время растением расходуется ранее образованный в листьях крахмал. Через 2—3 дня несколько листьев на растении закрывают с двух сторон черной бумагой так, чтобы часть поверхности листа оставалась открытой. Растение выставляют на свет.

Через сутки бумагу убирают, лист срывают, опускают его на одну минуту в кипяток, затем переносят в посуду с горячим спиртом, который в целях предосторожности подогревается на водяной бане. Обесцвеченный лист ополаскивают холодной водой и помещают в плоский сосуд. Расправленный лист заливают слабым раствором йода. Через 2—3 мин можно увидеть, что закрытая часть листа не изменила своего цвета, а та часть листа, на которую попадал свет, окрасилась в синий цвет.

Обработка йодом помогает обнаружить в клетках крахмал. Следовательно, крахмал образуется в листьях только на свету.

В ходе фотосинтеза растение использует углекислый газ и выделяет кислород, который поддерживает горение. Это можно подтвердить следующим опытом.

Следует взять две банки (0,8 л) из светлого стекла и поместить в каждую по 5-6 веточек традесканции. Чтобы растения не завяли, в банки наливают немного воды. Затем небольшие свечи, укрепленные на проволоке, зажигают, опускают в банки и закрывают их. Вскоре свечи погаснут, что указывает на отсутствие в банке кислорода и на увеличение содержания углекислого газа, образовавшегося в результате горения свеч. Свечи вынимают, закрывают обе банки стеклом и выставляют одну на свет, а другую — в темное место. На следующий день банки открывают и опять опускают туда на проволоке зажженные свечи. В банке, стоявшей на свету, свеча горит, а в банке, находившейся в темном месте, — гаснет (рис.4).

Рис. 4 Образование кислорода на свету

Таким образом, вы снова убедились, что зеленые растения поглощают углекислый газ и выделяют кислород, который поддерживает горение, только на свету, т. е. в процессе фотосинтеза. А при дыхании растения, как и все живые организмы, поглощают кислород, а выделяют углекислый газ.

Подводим итог

Фотосинтез — основа воздушного питания растений. При фотосинтезе зеленые растения с помощью хлорофилла извлекают энергию из солнечного света и с ее помощью создают органические вещества из углекислого газа и воды. Как побочный результат при фотосинтезе выделяется кислород.

Источник

Воздушное питание растений (фотосинтез)

Фотосинтез — процесс образования безазотистых органических веществ (углеводов) растениями из углекислого газа атмосферы и воды под действием солнечного света:

Растения, произрастающие на суше, ежегодно поглощают из атмосферы примерно 20 млрд т углерода в форме углекислого газа или в среднем 1300 кг на 1 га, вся совокупность растений, включая морские водоросли, — около 150 млрд т. Наземные растения перерабатывают 4217 кДж космической солнечной энергии в продукты ассимиляции ежегодно.

Однако коэффициенты использования фотосинтетически активной радиации (ФАР), то есть солнечного света с длиной волны от 380 до 720 нм, на создание органического вещества составляет 47-49% интегральной солнечной радиации. В посевах коэффициенты использования ФАР не превышают 0,5-3%. Максимально возможным для фотосинтеза считается КПД ФАР 28%. Наиболее интенсивное накопление биомассы — до 700 кг/га в сутки — происходит при хороших условиях освещенности, температуры и водоснабжения, высоком уровне обеспеченности питательными веществами и составляет до 14% от общего поступления ФАР за день.

Образующиеся в процессе фотосинтеза простые углеводы служат исходным материалом для синтеза сложных углеводов: сахарозы C12H22O11, крахмала (C6H10O5)n, клетчатки (C6H10O5)n.

Фотосинтетическая деятельность зависит от видовых особенностей растения, возраста отдельных листьев и всего растения, интенсивности и длины волны света, уровня азотного питания.

Только 2-4% солнечной энергии, попадающей на поверхность вегетирующих растений, используется для синтеза органических веществ. Остальная часть расходуется на транспирацию и отражение. Растение испаряет воду для охлаждения. Сам процесс испарения связан с большой затратой энергии. На испарение листьями расходуется более 25% солнечной энергии, в южных районах — до 70-95%, что примерно в 10-45 раз больше, чем запасается в урожае.

Одна из задач современной науки — изыскание способов повышения коэффициента использования солнечной энергии.

«Если последствия хищнического хозяйства, непроизвольно удаляющего из почвы питательные вещества, и поправимы тем или иным способом, путем удобрения земли, то окончательно непоправимо только расточительное, неумелое пользование главным источником народного богатства — солнечным светом».

К.А. Тимирязев

Для образования сложных органических веществ из первичных продуктов фотосинтеза затрачивается энергия, образующаяся в растении в результате дыхательных процессов, то есть окисление углеводов кислородом. Этот процесс противоположен фотосинтезу:

Выделяющаяся при дыхании энергия используется на:

  1. синтез других органических соединений;
  2. поглощение корнями солей и воды из почвы и передвижение их по частям растения;
  3. совершение корнями работы в почве при их росте.

Энергия дыхания используется и для преодоления ростками сопротивления почвы при прорастании.

Энергия, выделяемая в процессе дыхательного окисления веществ переходит в специфическую форму накопления энергии — макроэргические фосфатные связи аденозинтрифосфорной кислоты (АТФ).

Макроэргические соединения можно разделить на две группы:

  1. глицерофосфат, 3-фосфоглицериновая кислота, глюкозо-6-фосфат, фруктозо-6-фосфат. Соединения этой группы накапливают от 0,8 до 3,0 ккал на 1 моль вещества;
  2. аденозинтрифосфорная кислота (АТФ), аденозиндифосфорная кислота (АДФ), 1,3-дифосфоглицериновая кислота, фосфоэнолпировиноградная кислота. Соединения этой группы накапливают от 6 до 16 ккал на 1 моль.

Во всех реакциях обмена веществ энергия используется в сопряженных процессах освобождения и использования энергии, а передача энергии от одной реакции к другой может быть только, когда две реакции идут последовательно и имеют общие промежуточные продукты. Так, образование сахарозы может протекать сопряжённо с гидролизом АТФ:

АТФ + глюкоза → глюкозофосфат + АДФ (ΔF = -7000);

глюкозофосфат + фруктоза → сахароза + H3PO4.

АТФ + глюкоза + фруктоза → сахароза + АДФ + H3PO4 (ΔF = -7000).

Аналогично протекают процессы образования крахмала из глюкозы, белков из аминокислот.

В сухие жаркие годы с суховеями фотосинтез у растений возможен только в ранние утренние и вечерние часы. В остальное время происходит потеря пластических веществ и энергии на сопротивление и защитные реакции неблагоприятным условиям среды (дефициту влаги и повышенной температуре). При этом нарушается баланс между образованием и расходованием макроэргических фосфорных соединений, снижается энергетический потенциал, повышается окислительный потенциал в клетке, что приводит к окислительному разрушению углеводов, белков, в связи с чем в тканях растительного организма накапливается аммиак и наступает их отравление.

Было отмечено положительное влияние фосфора и калия на обводненность коллоидов протоплазмы, что приводит к снижению расхода влаги на транспирацию. Ткани растений, обеспеченные фосфором, характеризуются большой водоудерживающей способностью. У таких растений более устойчивый водообмен, обусловленный увеличением содержания осмотически- и коллоидно-связанной воды, повышенной гидратацией компонентов протоплазмы. Особенно действие фосфора проявляется в условиях недостаточного водообеспеченности в ранние периоды развития растений.

На современной стадии развития сельскохозяйственной науки, возможности регулирования процессов фотосинтеза ограничены. Ассимиляционная поверхность листьев в посевах может меняться от 5-6 до 40-50 тыс. м 2 на 1 га. Изреженные посевы поглощают только 20-25% падающей на них ФАР и используют на фотосинтез только 1-2% от поглощенной. При достаточной плотности посевов за вегетационный период растения могут поглощать 50-60% падающей ФАР и накапливать в органических веществах урожая до 2-3% от поглощенной энергии. Теоретически этот показатель может быть повышен до 20-25%. Если коэффициент использования поглощенной энергии на фотосинтез повысить до 6-8%, это приведет к сокращению расхода воды на создание 1 т сухого вещества с 400-500 до 75-100 т.

Источник



Урок по теме "Воздушное питание растений. Фотосинтез".
план-конспект урока по биологии (6 класс) на тему

6 класс (линия В. В. Пасечника). Урок разработан по проблемной технологии. Используются приемы личностных учебных действий: мотивация, создание проблемной ситуации, выдвижение гипотезы, исследование, обмен информацией, выводы по группам, обобщение. Рефлексия.

Ребята учатся анализировать ход опыта (сами опыты проводятся вне урока, на уроке можно продемонстрировать лист растения с опытом Сакса), устанавливать причинно — следственные связи.

Скачать:

Вложение Размер
urok_po_teme.fotosintez.doc 49.5 КБ

Предварительный просмотр:

Урок по теме «Воздушное питание растений. Фотосинтез».

1.Образовательные: сформировать знания о фотосинтезе как воздушном питании растений. условиях его протекания; формировать умения самостоятельно работать с материалом книги, дополнительной литературой, выделять главное, обобщать, делать выводы, заполнять таблицы.

2.Развивающие: развивать логическое мышление и творческие способности, использовать полученные знания в новой ситуации (решение различных заданий).

3. Воспитательные: использовать полученные знания о космической роли растений для формирования нетерпимого отношения к случаям уничтожения и повреждения растений.

Оборудование: книга, дополнительный материал.

1. Мотивация (постановка проблемы : 2 мин.) .Более 300 лет назад ученый Ван — Гельмонт поставил опыт: поместил в горшок 80 кг земли и посадил в него ветку ивы, предварительно взвесив ее. Растущему в горшке растению в течение 5 лет не давали никакого питания, а только поливали дождевой водой, не содержащей минеральных солей. Взвесив иву через 5 лет, Ван – Гельмонт обнаружил, вес ее увеличился на 65 кг, а вес земли в горшке уменьшился всего на 50г. Каким образом добыла ива 64 кг 950 г органического вещества, из которых она построила ткани своего тела? Ван — Гельмонт, производивший опыт с ивой, не смог правильно ответить на этот вопрос.

Проблема : за счет чего растение увеличило вес на 64 кг 950 г? Какие для этого требуются условия и вещества?

2.Этап выдвижения учащимися гипотез по данной проблеме (мозговой штурм 4мин.). Запись на доске и в тетради.

Можно ли дать четкий, полный ответ, уверены ли вы в правильности выдвинутых ответов?

3 этап. Организация исследования в парах и группах (15 мин.).

Задание1 .Прочитайте текст, стр 149 («Возьмем какое — нибудь комнатное растение…до слов «На обесцвеченном листе появятся синие буквы»). Запишите ход проведения опыта немецкого ученого Сакса (60-е годы прошлого столетия), сделайте соответствующий рисунок. Сделайте вывод – данный опыт доказывает, что…

Задание 2 .Прочитайте текст, стр.150 («Выставим на свет на куске стекла… до слов «Значит, крахмала в листе нет».) Запишите ход проведения опыта, сделайте соответствующий рисунок. Сделайте вывод – данный опыт доказывает, что…

Задание 3. Прочитайте текст, стр.150 («Образование органических веществ» – Поставим опыт с комнатным растением пеларгонией… до слов «Белая полоса по краю листа не окрасилась»). Запишите ход проведения опыта, сделайте соответствующий рисунок. Сделайте вывод – данный опыт доказывает, что…

Задание 4 .Прочитайте текст, стр.151 («Выделение кислорода растениями») Запишите ход проведения опыта, сделайте соответствующий рисунок. Сделайте вывод – данный опыт доказывает, что…

Этап 4.Обмен информацией .(8 мин.). Расскажите о ходе проведения опыта, сделайте вывод и запишите обобщение на доске.

На основании обобщения дайте определение процесса фотосинтеза , запишите в тетрадь.

Этап 5. Обобщение (8 мин.).

Какое ещё вещество необходимо для процесса фотосинтеза? Найдите сведения о воде в ваших текстах.

Обратите внимание на гипотезы, исследования и проанализируйте. В чем причина увеличения веса у растений?

«Дайте самому лучшему повару сколько угодно свежего воздуха, сколько угодно солнечного света и целую речку чистой воды и попросите, чтобы из всего этого он приготовил вам сахар, крахмал, жиры и зерно, — он решит, что вы над ним смеетесь. Но то, что кажется совершенно фантастическим человеку, беспрепятственно совершается в зеленых листьях растений». ( Климент Аркадьевич Тимирязев )

Этап 6.Ввод новой информации (4 мин.).

Органические вещества образуются только на свету. Какова судьба солнечного луча, упавшего на землю? Космическую роль растений раскрыл в своих книгах «Жизнь растений», «Солнце, жизнь и хлорофилл» русский ученый К. А. Тимирязев. Упавший на растение, на хлорофилловое зерно луч потух, но не исчез. Он израсходовался на образование крахмала и продолжает существовать в скрытом для глаза виде. Фотосинтез – это и процесс усвоения, накопления и сохранения солнечной энергии. Зеленые растения, поглощая солнечную энергию, содержат эту энергию в тех органических веществах, из которых строится их тело – корень, стебель, листья, цветок, плоды, семена. Из истории: Стефенсон (изобретатель паровоза) спросил у Бугланда (геолога), какая сила двигает поезд и что приводит в действие машину? «Один из ваших машинистов». «Нет, солнечный луч, погребенный тысячелетиями в виде каменноугольных отложений».

За год растения на нашей планете поглощают 600 млрд т углекислого газа, выделяют в атмосферу до 400 млрд т кислорода и образуют около450 млрд т органического вещества. Все эти процессы протекают только в неповрежденных частях зеленых растений. Призыв защитников природы об охране зеленых насаждений имеет научное обоснование.

Этап 7. Рефлексия. (2мин.) Какая проблема урока, как мы ее решали, помогли ли нам обобщения каждой группой.

Д/З: 30, опыты, рисунки, понятия. Задания на применение знаний в новой ситуации.

По теме: методические разработки, презентации и конспекты

урок в 6 классе «Минеральное питание растений»

урок по УМК В.В.Пасечника «Минеральное питание растений». представлен подробный конспект урока, презентация к уроку, включен региональный компонент.

Тема: «Воздушное питание растений. Фотосинтез»

Тема: «Воздушное питание растений. Фотосинтез» Цель урока: раскрыть сущность процесса фотосинтеза.Задачи:образовательная: углубить и расширить представления о питании растений; сформировать.

Питание клетки.Фотосинтез.

Этот материал разработан для учащихся 9 класса.

Фотосинтез- питание растений

План — конспект урока в 6 классе «Фотосинтез — питание растений».

Технологическая карта урока биологии в 6 классе. Тема «Воздушное питание растений. Космическая роль фотосинтеза»

Технологическая карта составлена на основе ФГОС ООО. Урок изучения нового материала с использованием технологии проблемного обучения.

Разработка урока по биологии в 6 классе на тему "Воздушное питание растений (фотосинтез)". УМК "Русское слово".

Урок изучения новой темы по биологии Почвенное питание растений в 6 классе ФГОС УМК Пасечник.

Источник

Урок по теме "Воздушное питание растений. Фотосинтез". 6-й класс

Образовательная цель: Раскрыть сущность процесса фотосинтеза и его значения для жизни на Земле.

  • Систематизировать знания о строении и функции листа.
  • Познакомиться с процессами, происходящими в зеленом листе.
  • Сформулировать навыки практического применения знаний.

Развивающие:

  • Формировать умение применять полученные знания на практике.
  • Развивать познавательный интерес.
  • Развитие речи и мышления.

Воспитательные:

  • Воспитывать стремление к получению новых знаний, обобщению знаний из различных областей жизни.
  • Воспитывать бережное отношение к природе.

Тип урока: урок изучения нового учебного материала.

Оборудование: проектор, компьютер, таблицы «Внутреннее строение корня», «Клеточное строение листа», презентация по теме урока. Приложение 1

  1. Организационный момент.
  2. Этап проверки знаний.
  3. Этап подготовки учащихся к активному и сознательному усвоению нового материала.
  4. Этап усвоения новых знаний.
  5. Этап первичной проверки понимания изученного.
  6. Этап применения знаний.
  7. Этап закрепления нового материала.
  8. Этап информирования учащихся о домашнем задании, инструктаж по его выполнению.

1. Организационный момент

Учитель. Здравствуйте, ребята. Учитель проверяет готовность учащихся к уроку.

2. Этап проверки знаний

Учитель проводит фронтальный опрос.

  • С каким важным свойством живых организмов мы познакомились на предыдущем уроке?
  • Что такое питание?
  • Какое значение этот процесс имеет для живых организмов?
  • Какой орган растения обеспечивает почвенное питание?
  • Какие клетки корня принимают участие в поглощении этих веществ из почвы?
  • Какие вещества растение получает из почвы? (Учащиеся рассказывают о значении для растений таких элементов как азот, калий, фосфор.)

3. Этап подготовки учащихся к сознательному усвоению нового материала

Учитель. Ученик прочитал в учебнике, что через корни в растения поступает вода и растворенные в ней минеральные соли, и задумался: «Растения содержат не только минеральные, но и органические вещества, откуда же растения получают органические вещества, если не из почвы?». Учитель показывает «таинственную шкатулку», в которой лежит кусочек каменного угля. Тайна растения спрятана в этой шкатулке. «Здесь спрятана солнечная энергия, которая была законсервирована тогда, когда на Земле еще не было динозавров». Как может быть спрятана солнечная энергия в каменном угле? На этот вопрос мы и попытаемся сегодня дать ответ.

Чтобы ответить на этот вопрос нужно познакомиться со вторым способом питания растений – это воздушное питание. На уроке мы познакомимся с великой тайной растений и узнаем, как растения связывают все живое на земле с Космосом. Познакомимся с основной функцией зеленого листа. Узнаем, почему человек может погреться у костра, в который сложил холодные сухие ветки. Важны ли зеленые растения для жизни человека?

Тема урока «Воздушное питание растений. Фотосинтез». Слайд 1–2 Приложение 1

Около 300 лет многие ученые разгадывали тайну растения. Давайте и мы попытаемся проникнуть в эту тайну.

4. Этап усвоения новых знаний

Учитель. Иван Андреевич Крылов любил сочинять басни. Говорят, одну басню он сочинил так. Как-то раз Крылов неторопливо шел по Летнему саду. Ему нравился этот тенистый уголок Петербурга. Сюда не доносился шум большого города, а ветерок, тянувший с Невы, был свеж и располагал к сочинительству. Дойдя до конца аллеи, Иван Андреевич остановился перед высокой липой. Взглянул на черный ствол, поднял глаза к пышной, закрывающей солнце кроне. Подивился множеству листьев. Подумал: «Как роскошен зеленый наряд деревьев. И как в общем-то бесполезен….» Постоял минуту-другую, загадочно смотря ввысь, и вдруг произнес вслух: «А что, если….» В тот же вечер Крылов сочинил басню «Листы и корни». В ней говорилось о том, как возгордились листья, считая себя самыми важными частями дерева. И как корни напомнили зазнайкам, что именно от них, от корней, зависит жизнь дерева, потому что они питают его. А от листьев никакой пользы нет.

Запись в тетрадь: Орган растения. Лист.

В то время когда Крылов сочинил свою басню, люди еще не знали, для чего деревьям нужны листья, еще не было точных приборов, которые помогли бы раскрыть тайну зеленого «хитреца». Когда они появились, ученые смогли тщательно исследовать лист и заглянуть в его внутренние «покои». И тогда оказалось, что они нужны растению ничуть не меньше, чем корни. Что они способны на такие чудеса, какие под силу лишь волшебникам. Открытие этой тайны шло медленно и с большими трудностями. Считается, что главную функцию зеленого листа обнаружил английский ученый Д. Пристли в конце 18 века. Дополнили это открытие швейцарские ученые Сенебье и Сосюр, большой вклад внес русский ученый К.А.Тимирязев. Слайд 3–4

Итак, с чего же начинаются эти чудеса? С дыхания: вдох – выдох. Как у людей. Чем дышит человек? Носом. А у растений есть свои носы? Есть, только они не такие заметные.

Чтобы увидеть «носы» растений, нужно рассмотреть зеленый лист в микроскоп. Оказывается, лист совсем не гладкий. Больше всего он похож на решето с мелкими дырочками. Только дырочки не круглые, а узенькие – вроде щелочек. И называются они устьицами. Это и есть «носики», или, точнее, «ноздри», растения. Устьица с секретом: то открываются, то закрываются, как форточки в окне. Запись в тетрадь: Клетки. Устьица.

Учитель. Кто открывает и закрывает устьица?

Размер устьиц зависит от солнца: слабо светит – устьица широко открыты, жарко греет – пора прикрывать, а то лист перегреется. Утром, когда первые, робкие лучи солнца начинают освещать землю, устьица открываются. Через них внутрь листа проникает наружный воздух. Он состоит из смеси нескольких газов. Все они растению не нужны. Ему требуется лишь один – углекислый газ. Поэтому этот газ отделяется от других и задерживается внутри листа. А остальные газы удаляются наружу через те же устьица. Запись в тетрадь: Углекислый газ.

Заглянем в микроскоп. Снова заглянем в микроскоп и понаблюдаем за одной из клеток. Найдем в ней пластиды – хлоропласты. Вы заметили, что благодаря движению цитоплазмы, хлоропласты в листьях находятся в постоянном движении.

Учитель. Какого цвета хлоропласты? Зеленые. Благодаря какому веществу они имеют такую окраску? Это хлорофилл. Хлорофилл – самое удивительное вещество на Земле. Он придает листьям зеленый цвет – его называют цветом жизни. Слайд 5

Запись в тетрадь: Хлоропласты.

Именно к хлоропластам и направляется почетный пленник – углекислый газ. Там его уже дожидается вода, которую добыли из земли корни и подали наверх – к листьям.

Учитель. Что образуется в листе с участием этих веществ? Давайте мы с вами откроем дверь в нашу воображаемую лабораторию и посмотрим опыты, которые впервые поставил немецкий ученый Ю. Сакс в 1864 году. Слайд 6–7.

Доказать, что зеленое растение только на свету образует органические вещества, можно простым опытом. Зеленое растение примулу, помещают в темный шкаф. Через 2-3 дня у этого растения черной бумагой закрывают часть одного листа и ставят растение на свет. Через 8–10 часов срезают этот лист, снимают с него пластинки бумаги. Оказывается, внешне лист никак не изменился. Но после его обесцвечивания (кипячением в спирте разрушается хлорофилл) и последующей обработки раствором йода можно увидеть, что незатемненная часть листа посинела, а бывшая затемненной часть листа приобрела желтый цвет йода.

Учитель. В чем кроется тайна зеленого листа? Какие клеточные структуры окрасились в синий цвет? Где же в клетках листа образуется крахмал?

В нашей виртуальной лаборатории есть прекрасный микроскоп. Давайте с его помощью посмотрим на посиневший лист. Я думаю, что нам удастся выяснить, что именно окрасилось в синий цвет. Так мы сможем понять, где в клетках листа образуется крахмал. Слайд 8 «Где в клетках листа образуется крахмал?» Что такое? При взгляде в микроскоп просто рябит в глазах от каких-то синих точек. Наведем четкость изображения. Да это же посинели наши давние знакомые – хлоропласты.

Вывод: органические вещества на свету образуются в зеленых клетках листа.

Учитель. «Ловушкой солнечных лучей» назвал хлорофилловое зерно Тимирязев. С первым лучом света в хлорофилловом зерне начинаются удивительные превращения.

Но причем тут свет? Оказывается, его роль в этом деле огромна. Потому что никакого чуда просто не произойдет, если на помощь листу не придет энергия солнечного света. Она, как двигатель, приводит в движение сложный механизм. Помогает в этом деле и способность хлоропластов поворачиваться то одним, то другим бочком к свету, чтобы лучше улавливать солнечные лучи. Под действием света хлоропласты приходят в такое возбужденное состояние, так напрягаются, что многие из них от непосильного труда разрушаются. Разрушаются, но дело свое делают. Когда в хлоропластах соединяются углекислый газ и вода, происходит настоящее чудо. От их соединения рождается совершенно новый продукт – крахмал. На такой фокус не способен ни один факир. Ни даже ученые всего мира. Запись в тетрадь: Органические вещества. Слайд 9

Учитель. Но что же от всего этого получает само растение? Зачем ему затрачивать такие усилия?

Крахмал, который вырабатывают зеленые листья, нужен для питания всех частей растения – от корней до цветков и плодов. Без сладкого угощения яблоки, абрикосы и прочие фрукты окажутся несладкими. Когда же сахар соединяется с веществами, которые добывают из земли корни, образуются белки и жиры. Они тоже нужны растению. Крахмал, образовавшись в клетках листа, превращается в сахар. Раствор сахара по ситовидным трубкам передается от листьев ко всем частям растения. Затем из сахара и минеральных солей растение создает необходимые ему белки, жиры, углеводы. Например, в семенах подсолнечника – много жира, в семенах фасоли много белка. А вот в клубнях картофеля сахар вновь превращается в крахмал. Слайд 10

Учитель. На что еще способны листья?

Еще 200 лет назад даже самые знаменитые ботаники не знали, что зеленые листья помогают нам дышать. Чтобы разгадать эту загадку, ученым пришлось провести множество опытов. Их ставили в разных странах люди самых разных профессий.

Первым, кто верно ответил на этот вопрос, был английский химик Джозеф Пристли. В этом ему помогли две мыши. Да, да, самые обычные серые мыши. Они были до того обычные, что не имели даже имен. Но благодаря опытам стали настолько знаменитыми, что о них до сих пор помнят ученые. Cлайд 11

Доктор Пристли в 70-х годах 18 века работал над очисткой воздуха, испорченного горением. Однажды он поймал мышь и посадил ее под плотно закрытый стеклянный колпак. Через несколько часов мышь погибла.

Учитель. Почему, ребята? Ответ учащихся: мышь израсходовала весь чистый воздух под колпаком. «Она задохнулась от недостатка хорошего воздуха», – решил ученый. Тогда Пристли изменил условия опыта. Он поместил под стеклянный колпак, наполненный этим воздухом (тогда еще не были открыты ни углекислый газ, ни кислород), зеленую веточку мяты, опущенную в воду, чтобы листья не завяли. Он хорошо знал, что для жизни растениям и животным нужен чистый воздух. Если мышь погибала под колпаком с испорченным воздухом, то, рассуждал ученый, должно погибнуть и растение. Спустя неделю он подошел к сосуду. К его удивлению растение выглядело превосходно. Прошла еще неделя, а мята росла лучше, чем на свежем воздухе. Ученый ввел в сосуд горящую свечу. Свеча горела ровным ярким пламенем. Удалив свечу, Пристли посадил под колпак мышонка. Проходили дни, мышонок ел, бегал, прыгал.

Учитель. К каким выводам пришел ученый?

«Значит, – решил Пристли, – листья растения постоянно обновляют воздух и делают его пригодным для дыхания». Когда англичане узнали про опыты Пристли, в стране началось небывалое увлечение комнатными растениями. Все вдруг захотели с их помощью оздоровлять воздух в своих домах. Комнаты «ломились» от обилия герани, фикусов, бегонии и других зеленых помощников. Мода на комнатные растения из Англии перекинулась в соседние страны.

В Швеции жил аптекарь Карл Вильгельм Шееле. Он решил повторить опыты Пристли. Проводил их Шееле по ночам в каморке при аптеке, пользуясь огарком свечи. Он был отличный химик, опыты проводил умело, но результаты получил противоположные тому, что наблюдал Пристли. Свеча под колпаком с горшком мяты гасла, мышь погибала, мята засыхала.

Учитель. Как разрешить спор Шееле с Пристли? Ученики отвечают: ночью растения не очищают воздух. Голландский врач Ингенхауз также провел много точных опытов и доказал: «Листья действительно освежают, улучшают воздух, но делают это только днем – при солнечном свете, а в темноте ничего подобного не происходит». Работая на свое растение, листья оказывают огромную услугу всем живым существам на нашей планете: они выделяют в воздух живительный газ кислород, да в таком огромном количестве, что его хватает для дыхания всех людей и животных. Не будь кислорода, жизнь на Земле давно бы прекратилась. Слайд 12

Учитель. Откуда же появляется этот газ?

Когда в хлоропластах вода соединяется с углекислым газом, получается не только крахмал. Образуется еще много кислорода. Но в таком большом количестве он растению не нужен, и его излишки удаляются наружу через устьица. Так в воздух, которым мы дышим, постоянно добавляется живительный кислород. И чем больше будет на Земле растений, тем легче нам будет дышать. Поэтому те мальчишки, которые ломают ветки деревьев и обрывают листья, вредят самим себе. Ученые называют волшебные превращения в зеленом листе фотосинтезом. Слайд 13

Запись в тетрадь: Фотосинтез – это процесс протекающий в зеленых листьях растений на свету при котором из углекислого газа и воды образуются органические вещества и кислород. Слайд 14

5. Этап применения знаний

Учитель предлагает ребятам решить познавательные задачи.

Познавательная задача. Шестиклассник, узнав, что из воды и углекислого газа на солнечном свету образуется крахмал, решил получить его. Он поставил сифон с газированной водой (а газированная вода – это смесь углекислого газа и воды) на яркий солнечный свет. Образовался ли крахмал в сифоне? Что необходимо для образования крахмала? Значит главный участник процесса фотосинтеза – это хлорофилл.

Ну, а теперь давайте попробуем составить схему фотосинтеза. Слайд 15

Выдающийся русский ученый К.А.Тимирязев, изучив процесс фотосинтеза, пришел к выводу, что растение не только поглощает углекислый газ и воду, но и усваивает солнечную энергию. Вот как об этом он писал. «Когда– то, где– то на землю упал луч Солнца, но он упал не на бесплодную почву, он упал на зеленую былинку пшеничного ростка, или лучше сказать на хлорофилловое зерно. Ударяясь в него, он потух, перестал быть светом, но не исчез. В той или другой форме он вошел в состав хлеба, который послужил нам пищей. Он преобразился в наши мускулы, в наши нервы. Этот луч Солнца согревает нас! Он приводит нас в движение. Быть может, в эту минуту он играет в нашем мозгу. Пища служит источником силы в нашем организме, потому только, что она – не что иное, как консерв солнечных лучей».

Учитель. Как вы понимаете: луч солнца вошел в состав хлеба, луч солнца согревает нас? К.А.Тимирязев первым доказал, что благодаря растениям на Земле накапливается энергия Солнца. Доказав это, Тимирязев, назвал роль растений на Земле космической.

Познавательная задача. Почему же сухие дрова выделяют тепло? Слайд 16

Дело в том, что за время своей жизни деревья и другие растения запасают в своих клетках солнечную энергию. Она сохраняется в виде энергии, заключенной в органических питательных веществах. А затем, при горении, происходят различные

химические превращения, которые «высвобождают» спрятанную про запас энергию в виде тепла.

Познавательная задача. Дрова, заготовленные зимой, ценятся выше, чем заготовленные летом. Они лучше горят и дают больше тепла. С чем это связано?

Английский ученый Томсон лорд Кельвин еще в 1898 году утверждал, что человечеству грозит удушье, поскольку в воздух выделяется огромное количество углекислого газа. Это утверждение опроверг К.А.Тимирязев.

Учитель. Какими фактами руководствовался ученый?

Великий русский ученый ботаник К.А.Тимирязев назвал зеленый лист великой фабрикой жизни. Сырьем для нее служит углекислый газ и вода, двигателем – свет. Зеленые растения, постоянно выделяя кислород, не дадут погибнуть человечеству. А мы, должны заботиться о чистоте воздуха.

Учитель. В ходе урока было доказано, что без зеленого листа не только не может жить растение, но и не было бы вообще жизни на Земле, так как кислород земной атмосферы, которым дышат все живые существа, был наработан в процессе фотосинтеза. Зеленым листьям растений принадлежит ведущая роль в круговороте кислорода на нашей планете. Так какое же значение имеет фотосинтез? Слайд 17–18

6. Этап первичной проверки понимания изученного

Учащиеся поднимают карточки с терминами.

  • В листьях есть органы для дыхания и газообмена – это… (устьица).
  • Через устьица поступает в лист… (углекислый газ).
  • От корневой системы поступает… (вода и минеральные соли).
  • Солнечный свет попадает на зеленые пластиды… (хлоропласты).
  • В хлоропластах образуется… (крахмал)
  • Из листьев в окружающую среду выделяется… (кислород).

7. Этап закрепления нового материала

1. Может ли крахмал образовываться в клетках растений в темноте?

2. В какое из веществ не может превращаться сахар, который образуется в клетках в процессе фотосинтеза?

  1. Белки
  2. Жиры
  3. Крахмал
  4. Минеральные соли

3. В каких частях растения образуются питательные вещества при воздушном питании?

  1. В корнях
  2. В листьях
  3. В стеблях

4. Как называется зеленый пигмент в клетках растений?

  1. Меланин
  2. Хлорофилл
  3. Ксантофил

5. Какой газ поглощают клетки растений в процессе фотосинтеза?

  1. Кислород
  2. Углекислый газ

6. Какой газ выделяют растения в процессе фотосинтеза?

  1. Кислород
  2. Углекислый газ

7. В какое время суток происходит выделение кислорода?

8 Этап информирования учащихся о домашнем задании, инструктаж по его выполнению

Источник

Adblock
detector