Одноклеточные и многоклеточные организмы

Покрытосеменные

Цветковые растения или Покрытосеменные — отдел высших растений, отличительной особенностью которых является наличие цветка в качестве органа полового размножения и замкнутого вместилища у семяпочки.

Цветковые растения произошли от труппы вымерших водорослей, которая дала качало и семенным папоротникам. Таким образом, голосеменные и покрытосеменные растения — параллельные ветви эволюции, имеющие общего предка, но затем эволюционировавшие независимо друг от друга. Остатки первых цветковых растений обнаруживаются в раннемеловых отложениях.

Начиная с конца мелового периода мезозойской эры, на Земле начинают господствовать покрытосеменные растения, которые приобрели целый ряд преимуществ по сравнению с другими высшими растениями, в том числе голосеменными. На этот же период приходится наибольшее распространение насекомых, птиц и млекопитающих, которые связаны между собой цепями питания, приспособлениями к размножению и обитанием в одинаковых условиях среды. Жизненные формы покрытосеменных представлены деревьями, кустарниками или травами, что обусловливает их наибольшую экологическую пластичность и распространение на суше во всех природных зонах и в водных бассейнах. Их основные вегетативные органы — корень, стебель и лист, имеющие многочисленные видоизменения, самые специализированные по строению и функциям.

Покрытосеменные растения, как и голосеменные, размножаются с помощью семян, но семена их защищены околоплодником, что способствует их лучшему сохранению и распространению. А появление цветка — органа семенного размножения, который (в целом) дает новое поколение (репродукцию), ставит этот отдел растений в положение самых высокоорганизованных представителей растительного царства.

Отличительные признаки покрытосеменных

  1. Наличие цветка.
  2. Наличие завязи и плода, сохраняющих семязачатки и семена.
  3. Опыление ветром, насекомыми, водой, птицами.
  4. Женский заросток — восьмиядерный зародышевый мешок без архегониев.
  5. Мужской заросток—пыльцевое зерно (пыльца), состоящее из двух клеток — вегетативной и генеративной.
  6. Двойное оплодотворение: один спермий оплодотворяет яйцеклетку, другой — вторичное (центральное) ядро зародышевого мешка.
  7. Двойное оплодотворение завершается следующими преобразованиями: из завязи образуется плод, из семязачатка (семяпочки) — семя, из зиготы — зародыш семени (диплоидный), из оплодотворенного вторичного ядра — вторичный эндосперм.
  8. Эндосперм представлен тканью с триплоидным набором хромосом. Формируется одновременно с зародышем семени, в нем откладываются запасные питательные вещества (белки, углеводы, жиры).
  9. При прорастании как только внутрь семени поступает вода, начинается его набухание, запасные вещества переходят в растворимые формы, доступные для всасывания зародышем. Часть запасных веществ эндосперма расщепляется дыхательными ферментами. что освобождает энергию (в виде АТФ), необходимую для роста зародыша.
  10. Триплоидность ядер клеток эндосперма, несущих наследственную информацию материнского и отцовского организмов, повышает приспособленность молодого растения к различным условиям среды.

Из зародыша семени вырастает спорофит (бесполое диплоидное поколение), который может быть представлен различной жизненной формой — травой (однолетней или многолетней), кустарником, деревом, лианой. Любая жизненная форма растения имеет основные органы — корень, стебель, листья и их видоизменения, а также цветки, семена, плоды.

Покрытосеменные представлены двумя классами — однодольные и двудольные.

Сравнение классов однодольные и двудольные

Теперь рассмотрим каждый класс отдетьно.

Класс однодольные

Название класса обусловлено тем, что в зародыше семени находится одна семядоля. Однодольные существенно отличаются от двудольных по следующим признакам:

  1. мочковатая корневая система, корень имеет первичное строение (в нем отсутствует камбий)
  2. листья в большинстве простые, цельнокрайние с дуговым или параллельным жилкованием
  3. проводящие пучки в стебле замкнутые, разбросаны но всей толще стебля

Семейство злаки

Травянистые растения (исключение — бамбук). Стебли простые, иногда ветвистые, цилиндрические или сплюснутые, разделенные узлами. У большинства растений полые в междоузлиях, заполнены тканью только в узлах. Такой стебель называют соломиной. Листья линейные или ланцетные, с влагалищем в основании. В месте перехода влагалища в пластинку находится вырост—язычок, форма которого является признаком при определении злаков. Цветки желтовато-зеленые, мелкие, собраны в соцветия колоски, которые образуют колос, кисть, метелку. У основания каждого колоска прикреплены две колосковые чешуи, прикрывающие колосок. В колоске 2—5 цветков. Околоцветник состоит из двух цветочных чешуи, двух пленок, В двуполом цветке содержатся три тычинки и пестик с двумя перистыми рыльцами. В отдельных случаях встречается 1—-6 колосковых и цветочных чешуи, 2—6, редко 40 тычинок. Плод — зерновка (орешек или ягода).

Хозяйственное значение

  1. Пшеница, рожь, ячмень, овес, кукуруза, рис, сорго, могар, сахарный тростник — хлебные, технические культуры (получают сахар, спирт, пиво).
  2. Овсяница, мятлик, тимофеевка — кормовые травы.
  3. Тростник, бамбук. Стебли используют в строительстве, для получения бумаги, как топливо. Злаки широко используют для закрепления песков, склонов, в декоративном цветоводстве.
  4. Пырей ползучий, овсюг, щетинник, ежовник — сорняки.

Семейство лилейные

Одно-, двух- и многолетние травы, полукустарники, кустарники в деревья. Для многолетних трав характерно наличие луковиц или корневищ. Цветки двуполые, реже однополые. Околоцветник в основном венчиковидный, иногда чашечковидный, из свободных иди неполностью сросшихся листиков. Количество тычинок соответствует количеству листиков околоцветника. Пестик один. Плод — трехгнездная коробочка или ягода.

Хозяйственное значение

  1. Лук, чеснок, спаржа — овощные культуры.
  2. Ландыш, алоэ, чемерица — сырье для лекарств.
  3. Лилия, ландыш, тюльпан, гиацинт — декоративные культуры.

Класс двудольные

Систематический признак двудольных — наличие двух семядолей в зародыше. Отличительные особенности двудольных следующие:

  1. корневая система стержневая, с развитыми боковыми корнями;
  2. корень и стебель имеют вторичное строение, есть камбий;
  3. сосудисто-волокнистые пучки стебля открытого типа, расположены концентрически;
  4. листья как простые, так и сложные;
  5. цветки пяти- и четырехчленного типа;
  6. эндосперм в созревших семенах хорошо выражен у ряда видов: пасленовых, зонтичных и др. Но у бобовых, сложноцветных и. других (например, горох, фасоль, подсолнечник, развит слабо или совсем отсутствует и запасные питательные вещества находятся непосредственно в семядолях зародыша.

Семейство розоцветные

Распространены в странах с субтропическим и умеренным климатом. Очень разнообразны по строению цветка, соцветий, плодов и листьев. Характерная особенность —своеобразное строение гинецея и цветоложа. Последнее имеет тенденцию к разрастанию. У некоторых видов растений части цветка, которые окружают пестик, срастаются основаниями и образуют со сросшимся, цветоложем мясистую чашу— гипантий. Цветки с двойным пятичленным околоцветником, тычинок много, расположены они по кругу (их количество кратно 5), пестик один или несколько. Завязь верхняя, нижняя или средняя. Плоды — костянки, орешки, часто ложные или сборные. Насекомоопыляемые растения.

Хозяйственное значение

  1. Шиповник. Плоды содержат много витамина С, 1-—8% сахара, до 2% крахмала, 1—5% азотиетых веществ. Корни богаты дубильными веществами. Используются в пищевой (лекарственные препараты) и парфюмерной промышленности.
  2. Розы (пояиантовые, чайные), малина, земляника, яблоня, груша, рябина, слива, вишня, абрикос, персик, миндаль — декоративные культуры, используются в пищевой, парфюмерной, фармакологической промышленности.

Семейство бобовые

Стебли прямостоячие, вьющиеся, стелющиеся. Листья сложные с прилистниками. Строение цветка типичное: чашечка из 5 чашелистиков (3+2), венчик из 5 лепестков (задний — парус, два боковых — ввела, два нижних, срастающихся в верхней части — лодочка). Тычинок 10 (из них 9 срастаются и образуют несомкнутую трубочку). Пестик один. Завязь верхняя, одногнездная. Плод — боб. Опыляются насекомыми.

Хозяйственное значение представителей семейства (астрагал, верблюжья колючка — полукустарник, вика, горох, клевер, люцерна, фасоль, соя, люпин): пищевые, кормовые, медоносные, декоративныё растения. Благодаря клубеньковым бактериям сидераты. Пищевые и кормовые качества снижаются из-за концентрации гликозидов (глициризин, кумарин) и алкалоидов (цитизин, спартеин). Играют заметную роль в формировании растительного покрова.

Семейство пасленовые

Травы, реже полукустарники, кустарники. Листья очередные, без прилистников. Простые, с цельной или рассеченной пластинкой. Цветки правильные или неправильные. Венчик сростнолепестный, трубчатый. К трубочке венчика прикреплено 5 тычинок. Пестик один с верхней двухгнездной завязью, которая содержит многочисленные семенные зачатки. Цветки двуполые. Насекомоопыляемые растения. Плод — ягода или коробочка (редко костянкрвидный). Большинство пасленовых содержит ядовитые алкалоиды, которые в малых дозах используются для получения лекарств.

Хозяйственное значение

  1. Паслен (паслен черный). Из листьев получают лимонную кислоту, наркотики, из семян табака — табачное масло.
  2. Картофель, баклажаны, томаты, перец. Используются в пищевой промышленности.
  3. Белладонна (красавка), скополия, дурман, белена черная — лекарственные растения.

Семейство крестоцветные

Одно- двух-, многолетние травы, полукустарники с очередными листьями, иногда собранными в прикорневую розетку. Цветки двуполые, собраны в кистевидные соцветия. Околоцветник двойной, четырехчленный. Чашелистики и лепестки расположены накрест. Тычинок 6, из них 4 длиннее, 2 короче. Пестик один. Плод — стручок или стручочек, В семенах содержится 15—49,5% масла.

Хозяйственное значение

  1. Дикая редька, сурепица пастушья сумка, горчица полевая, желтушник — сорняки.
  2. Капуста, редька, репа, брюква —огородные культуры.
  3. Горчица, pane— масличные культуры.
  4. Левкой, ночная красавица, маттиола—декоративные растения.

Семейство сложноцветные

Однолетние и многолетние травянистые растения, полукустарники, кустарники, небольшие деревья. Листья очередные или супротивные, без прилистников. Типичный признак — соцветие корзинка. На плоском или выпуклом дне корзинки расположены отдельные цветки. Корзинка имеет общую обертку, состоящую из видоизмененных верхушечных листьев. Типичные цветки двуполые, с нижней завязью, к которой прикреплена видоизмененная чашечка, венчик язычковый, трубчатый, воронковидный; окраска белая, синяя, желтая, голубая и др. Встречаются цветки однополые (мужские или женские), крайние цветки часто бесплодные. Тычинок 5, они срастаются пылинками в трубочку, через которую проходит столбик, несущий рыльце. Плод — обычная семянка с волосистым хохолком, или пленчатой коронкой.

Источник

Покрытосеменные

Отдел покрытосеменные (цветковые) самый многочисленный, он включает 235-250 тысяч видов. Его представители обитают по всему миру: от холодной тундры до жарких тропиков, отдельные виды освоили пресные и морские водоемы.

Растительность в тундре

Покрытосеменные составляют большую часть массы растительного сообщества, являются звеном в цепи питания (продуцентами) — важнейшими производителями органических веществ на суше, как водоросли — в морях и океанах.

Цветок — генеративный орган покрытосеменных (цветковых), высшая ступень полового размножения. Цветок характерен только для покрытосеменных растений, ни один из других отделов подобным генеративным органом не обладает. По своему строению цветок это видоизмененный обоеполый стробил, гомологичный стробилам голосеменных.

В отличие от голосеменных, у которых семязачатки лежат открыто на семенных чешуях, у цветковых семязачаток находится в замкнутом вместилище — завязи, сформированной из плодолистика (-ов).

Строение пестика

Двойное оплодотворение, открытое Навашиным Сергеем Гавриловичем, уникальное явление, характерное только для цветковых. Оно связано с тем, что в зародышевый мешок попадают два спермия, один из которых (n) сливается с центральной клеткой (2n), с образованием запасного питательного вещества — эндосперма (3n). Другой спермий (n) сливается с яйцеклеткой (n) с образованием зиготы (2n), из которой развивается зародыш.

Двойное оплодотворение

У цветковых появляется плод — генеративный орган, служащий для защиты и распространения семян.

Ксилема — проводящая ткань, обеспечивающая восходящий ток воды и растворенных в ней минеральных солей, представлена не трахеидами, а сосудами. Во флоэме ситовидные элементы окружены клетками-спутницами.

У покрытосеменных мы не найдем антеридиев и архегониев: гаметофиты максимально редуцированы.

В процессе опыления покрытосеменных участвуют насекомые, летучие мыши, птицы. Также опыление может происходить с помощью воды или ветра.

Опыление

Особенностью цветковых является способность образовывать многоярусные сообщества, более устойчивые и продуктивные.

Многоярусность растительного сообщества служит приспособлением к равномерному распределению света: светолюбивые растения занимают верхний ярус, а теневыносливые растения отлично чувствуют себя в тени светолюбивых 🙂

Ярусы леса

Классы покрытосеменных

Отдел покрытосеменные состоит из двух классов: однодольные и двудольные. К классу двудольных относятся семейства: крестоцветные, сложноцветные, розоцветные, бобовые (мотыльковые), пасленовые. Класс однодольные включает в себя семейства: злаковые, лилейные. Для каждого класса имеются характерные признаки.

    Двудольные — семейства: крестоцветные, сложноцветные, бобовые, розоцветные, пасленовые

      В составе зародыша обычно имеется две семядоли

    В семядолях содержится запас питательных веществ. При надземном прорастании семядоли (зародышевые листья) могут выполнять функцию фотосинтеза.

    Семядоли, зародышевые листья

    Листья двудольных простые и сложные, для двудольных характерно перистое и пальчатое жилкование.

    За счет камбия растения растут в толщину, возможен вторичный рост осевых органов (стебля и корня).

    Корневая система чаще всего стержневого типа, с хорошо выраженным главным корнем, от которого отходят боковые корни. Главный корень развивается из зародышевого корешка.

    Двудольные растения

    Цветки пятичленные, реже встречаются четырехчленные. Хорошо обособлены чашечка и венчик.

    Цветок двудольного растения

    Однодольные растения

    Цветок с простым околоцветником. Цветки чаще трехчленные, четырехчленные. Никогда не бывают пятичленными.

    Цветок однодольного растения

    Эндосперм семени

    Эндосперм (от греч. endon — внутри + греч. sperma — семя) — запасное питательное вещество, у покрытосеменных триплоидный (3n).

    Эндосперм в семени есть у подавляющего большинства однодольных (лука, ландыша, пшеницы) и двудольных (тмина, хурмы, фиалки). Отсутствует эндосперм в семенах тыквенных, крестоцветных (капусты), сложноцветных (подсолнечника), бобовых (гороха, фасоли), также у — березы, липы, дуба, клена, так как на ранней стадии развития растущий зародыш поглощает эндосперм.

    Строение семени однодольного и двудольного

    Жизненный цикл

    Из генеративных почек спорофита развиваются цветки. У взрослого растения спорофита (2n) в цветке в гнездах пыльников тычинок в ходе микроспорогенеза образуется пыльцевое зерно (n) — мужской гаметофит. В завязи пестика в семязачатке формируется женский гаметофит — зародышевый мешок, внутри которого находятся центральная клетка (2n) и яйцеклетка (n).

    В результате опыления (насекомым, ветром, человеком) пыльца с тычинок переносится на рыльце пестика. Пыльцевое зерно состоит из вегетативной и генеративной клеток. Вегетативная клетка начинает растворять ткани пестика, образует пыльцевую трубку и прорастает до зародышевого мешка. Генеративная клетка делится, образуя два спермия (n), из которых один сливается с центральной клеткой (2n) с образование эндосперма (3n) — запасного питательного вещества. Другой спермий (n) сливается с яйцеклеткой (n), образуя зиготу (2n).

    В дальнейшем из семязачатка формируется семя, а завязь превращается в околоплодник — образуется плод. Своим внешним видом плоды привлекают животных, и те их охотно поедают) Благодаря семенной кожуре семена не подвергаются расщеплению в желудочно-кишечном тракте человека и животных. Они выходят из ЖКТ в неизменном виде и остаются способны к прорастанию: так происходит расселение растений. Попав в благоприятные условия, они прорастают в спорофит (2n). Цикл замыкается.

    Жизненный цикл покрытосеменных

    Значение покрытосеменных

    Покрытосеменным в жизни человека отведено важное место. Только подумайте — почти все культурные растения принадлежат к этому отделу! Цветковые имеют медицинское значение, из многих растений изготавливаются лекарства. Их древесина используется для изготовления бумаги, мебели, применяются в промышленности.

    Валериана лекарственная

    © Беллевич Юрий Сергеевич 2018-2021

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

    Источник

    

    Одноклеточные и многоклеточные организмы

    вопрос А3 ГИА по биологии

    Давайте разберем особенности строения и жизнедеятельности одноклеточных и многоклеточных организмов по царствам, заодно и перечислим важнейших представителей каждого.

    1. Одноклеточные и многоклеточные организмы — бактерии

    строение бактерии

    Бесполое:

    • просто напополам (бинарное) или
    • почкованием;
    • спорообразование (для переживания неблагоприятных условий)

    Половое

    У бактерий, нет, конечно, мужских и женских клеток. «Половое» — означает обмен генетической информацией.

    1. Брожение — анаэробный (бесктслородный) процесс диссимиляции
    2. Дыхание — бактерии вместо кислорода используют кислородсодержащие органические и минеральные вещества (хемосинтез)
    3. Фотосинтез бескислородный — зеленые и пурпурные бактерии используют бактериохлорофилл;
    4. Фотосинтез кислородный — цианобактерии используют хлорофилл.
    • паразитические (патогенные)
    • симбиотические
    • индиффирентые

    Одноклеточные бактерии (наиболее часто встречающиеся): (могут объединяться, образовывать агрегат) :

    • кокки — шарообразная (сферическая форма);
    • извитая форма — спириллы и вибрионы — несколько клеток объединяются, вытянувшись в цепочку;
    • форма грозди — стафилококки;
    • палочковидные — кишечные бактерии;

    Многоклеточные бактерии: это в основном, цианобактерии и актиномицеты.

    А3 вариант 1 ГИА по биологии

    Ответ: 2) бактерии — симбиоты обоготят почву азотом, как следствие, повысится урожайность.

    2. Одноклеточные и многоклеточные организмы — растения

    Растения — это практически всегда организмы — автотрофы (продуценты), очень редко встречаются растения — гетеротрофы).

    Бесполое:

    • вегетативное;
    • бесполое (образование зооспор);

    Половое

    Есть как у одноклеточных, так и у многоклеточных растений.

    • паразитические
    • симбиотические
    • индиффирентые

    Одноклеточные растения: одноклеточные водоросли, растительные протисты,
    Многоклеточные растения: многоклеточные водоросли (ламинария, саргассум), споровые и семенные растения.

    У многоклеточных растений (кроме водорослей) клетки объединяются в ткани и в органы. В соответствии с функциями тканей, клетки имеют определенную специфику (см. ткани растений).

    На пересечении двух царств — растительного и животного стоит Эвглена зеленая — организм, способный и к автотрофному, и к гееротрофному питанию.

    3. Одноклеточные и многоклеточные организмы — животные

    Животные — это гетеротрофные организмы. Это консументы самых различных порядков.

    Бесполое:

    • амитоз
    • почкование

    Половое

    • «Половое» — обмен генетической информацией и
    • Половое (мейоз)- настоящее половое размножение у многоклеточных организмов.

    Одноклеточные животные: класс корненожки (амеба),

    класс жгутиковые (лямблия, эвглена),

    класс инфузории (инфузория-туфелька),

    класс споровики (малярийный плазмодий).

    Многоклеточные животные: клетки объединены в ткани, ткани — в органы и даже системы органов.

    А3

    Ответ: 1) эпителиальная ткань

    4. Одноклеточные и многоклеточные организмы — грибы

    Грибы — это организмы —деструкторы, это гетеротрофы.

    грибы

    Бесполое:

    • образование спор;
    • вегетативное (отпочковывание)

    Половое

    • паразитические (патогенные)
    • симбиотические
    • индиффирентые

    Ответ на вопрос в самом начале лекции — 1) мицелий низших грибов — многоядерные клетки-нити

    Источник

    Покрытосеменные растения могут быть одноклеточными и многоклеточными

    учительучительучительучитель

    Покрытосеменные таблица

    ПОКРЫТОСЕМЕННЫЕ, или ЦВЕТКОВЫЕ

    Покрытосеменные (Цветковые) — отдел высших растений, отличительной особенностью которых является; 1) наличие цветка в качестве органа полового размножения 2) замкнутого вместилища у семяпочки (а затем и у происшедшего из неё семени, откуда и появилось название покрытосеменные), 3) двойное оплодотворение.

    покрытосеменные

    Покрытосеменные представлены: деревьями, травами и промежуточными формами — кустарниками и кустарничками.

    Общая характеристика Цветковых растений:

    • древесные, кустарниковые и травянистые формы
    • однолетние, двулетние и многолетние растения
    • более 250 000 видов
    • повсеместное распространение (на всех континентах и во всех средах обитания)
    • семенное и вегетативное размножение
    • генеративные органы — цветки
    • после двойного оплодотворения происходит развитие семени с запасом питательных веществ; семя защищено околоплодником и находится внутри плода

    Широкое распространение и разнообразие строения цветковых растений обусловлено приобретением ими в процессе эволюции ряда прогрессивных черт:

    1. наличие цветка — органа, совмещающего функции полового и бесполого размножения;
    2. образование в составе цветка завязи, заключающей в себе семязачатки и предохраняющей их от действия неблагоприятных условий среды;
    3. двойное оплодотворение, в результате которого образуется триплоидный (а не гаплоидные, как у голосеменных) эндосперм;
    4. редукция гаметофита: мужской гаметофит — пыльцевое зерно состоит из двух клеток: вегетативной и генеративной (генеративная делится, образуя два спермия). Женский гаметофит состоит из 8 клеток зародышевого мешка.

    Классы Покрытосеменных (Цветковых)

    Выделяют два класса цветковых растений: однодольные и двудольные.

    цветковые растения

    Признаки двудольных растений:

    1. Зародыш имеет 2 семядоли, прорастающие надземно, с 3 проводящими пучками.
    2. Лист на черешке с сетчатым или ветвящимся жилкованием.
    3. Проводящая система состоит из одного кольца проводящих лучков, с камбием; во флоэме присутствует паренхима; кора и сердцевина дифференцированы.
    4. Корневая система стержневая, зародышевый корешок развивается в славный корень.
    5. Жизненные формы древесные и травянистые.
    6. Цветок имеет число элементов, кратное 5 или 4.

    однодольные цветковые

    Признаки однодольных растений:

    1. Зародыш с одной семядолей, прорастающей подземно, имеет два главных проводящих лучка.
    2. Лист без черешка, с параллельным или дуговым жилкованием, с влагалищным основанием.
    3. Проводящая система состоит из многих отдельных пучков; камбий отсутствует; паренхима во флоэме отсутствует; кора и. сердцевина не имеют четкой дифференциации.
    4. Корневая система мочковатая, зародышевый корешок рано отмирает, заменяясь системой придаточных корней.
    5. Жизненные формы травянистые, некоторые древесные формы вторичны.
    6. Цветки имеют число элементов, кратное 3, реже 4.

    Основные различия между Двудольными и Однодольными

    однодольные и двудольные, различия

    Жизненный цикл Цветковых растений

    Цикл развития цветкового растения

    Цикл развития. Нажми для увеличения картинки!

    Семейства Покрытосеменных (Цветковых)

    Семейства Покрытосеменных (Цветковых)

    Таблица «Покрытосеменные» кратко

    Покрытосеменные таблица

    Это конспект по теме «Покрытосеменные, или Цветковые». Выберите дальнейшие действия:

    Источник

    Покрытосеменные растения — характеристика и особенности

    Всего цветковые существуют около 140 миллионов лет — первые представители фауны с похожим строением появились в юрском периоде. Это были довольно примитивные и малочисленные виды. Древнейшими представителями цветковых считаются представители семейства нимфейные или кувшинковые. В середине мелового периода (около 100 миллионов лет назад) покрытосеменные уже были довольно широко распространены в мире. В конце мела они оказались доминирующей формой жизни и покрывали значительную часть суши. Примерно тогда же начали появляться предки многих современных растений — дуба, клёна, магнолии, бука. Одной из главной особенностей эволюции цветковых стала их высокая приспосабливаемость к изменяющимся условиям, что позволило им произрастать на разных географических широтах. Они отличаются огромным многообразием форм, размеров, способов развития и размножения. Среди цветковых можно найти водные и наземные, ползучие, вьющиеся, карабкающиеся и прямостоящие растения, которые растут и процветают во всех уголках Земли, от тропических лесов и долин рек до солёных морей и альпийских лугов. Другой интересной особенность эволюции покрытосеменных является большое разнообразие форм водяных растений. Они не произошли от водорослей напрямую, а эволюционировали от наземного предка в результате смены условий, потому отличаются сложным строением и большим количеством приспособительных механизмов.

    Основные признаки

    • растение состоит из стебля, корневой системы, листьев и цветка;
    • семя защищено околоплодником — оболочкой, которая обеспечивает его сохранность при распространении;
    • семязачатки и семена хранятся в завязи и плоде;
    • женский заросток представляет собой зародышевый мешок с восемью ядрами, а мужской — пыльцевое зерно, состоящее из вегетативных и генеративных клеток;
    • двойное оплодотворение — спермии (мужские гаметы) цветка воздействуют одновременно на яйцеклетку и ядро зародышевого мешка;
    • для размножения растению необходимо опыление, которое может осуществляться по воздуху или воде, а также с помощью переноса пыльцы птицами и насекомыми;
    • завязь оплодотворённого цветка преобразуется в плод, семяпочка — в семя, зигота — в зародыш семени, вторичное ядро — в эндосперм;
    • половое размножение с постоянной сменой поколений.

    Классы покрытосеменных

    • для однодольных характерна корневая система мочковатой формы, состоящая в основном из придаточных отростков, а для двудольных — мощный главный корень в форме стержня;
    • листья растений первого класса имеют простую структуру и состоят из обычной цельной пластинки, в то время как у второго они могут иметь более сложное строение;
    • жилкование у однодольных параллельное или дуговое, а у двудольных — сетчатое;
    • для растений с одной семядолей характерно количества частей цветка, кратное трём, а с двумя — четырём или пяти;
    • у однодольных покрытосеменных нет камбия — образовательной ткани, обеспечивающей рост стебля и корней в толщину;
    • проводящие пучки у двудольных расположены в виде кольца, а у родственного класса — беспорядочно и хаотично.

    Семейства однодольных

    • стебель-соломина;
    • небольшие корни с развитыми придатками;
    • сворачивающиеся при жаре листки;
    • простые цилиндроподобные цветки, собранные в злаки;
    • сухие невскрывающиеся плоды;
    • опыление ветром.
    • подземные луковицы или клубнелуковицы, которые формируются из побегов и могут защитить почки от неблагоприятного воздействия внешней среды во время жары заморозков;
    • прямой или вьющийся надземный стебель, который называется цветочной стрелкой;
    • узкие мясистые листья;
    • широкое разнообразие соцветий;
    • цветки обоеполые;
    • плод-коробочка или ягода;
    • опыление насекомыми, в тропических широтах также птицами, редко — ветром.

    Двудольные растения

    Семейство бобовых получило своё название за плоды в виде бобов или стручков. Оно состоит из 24,5 тысяч растений, объединённых в 946 родов. К особенностям, которые могут указать на принадлежность к этому классу, относятся стоячие вьющиеся стебли, сложные по строению листья с прилистником и цветы из пяти лепестков. Цветы обоеполые. Опыляются насекомыми. К семейству паслёновых относятся травы, кусты и маленькие деревья. К особенностям, которые могут показать принадлежность вида к ним, относится расположение листьев. В вегетативной части они растут попеременно, а в цветоносной — попарно. Из-за этого стебли у представителей флоры кажутся разветвлёнными на две или три части. Другие особенности семейства — соцветия в форме завитков, небольшое количество тычинок равной длины, похожие на почки семена, плоды в виде ягод или коробочек.

    Крестоцветные растения разделены на 4 тысячи видов, которые включают 400 разновидностей. В семейство входит много двулетних монокарпических растений с особой схемой цветения — они размножаются только один раз на последнем году жизни. К особенностям также относится стержневая корневая система (реже встречаются корнеплоды), простые листья без прилистника, толстый стебель, 6 тычинок, плод-стручок и кистеобразные соцветия. Ещё одним интересным семейством двудольных растений являются астровые, или сложноцветные. Это одна из самых больших групп, которая насчитывает почти 40 тысяч видов в 1911 родах. Их можно найти в любом уголке земного шара, от тундры до тропиков. Основной особенностью семейства является соцветие-корзинка, которое образуется из множества очень мелких цветков. Кроме того, для них характерен развитый корень-стержень и плод-семянка, не содержащий белка.

    Хозяйственное значение

    • пищевая промышленность, изготовление кормов для животных;
    • медицина — как лекарственные растения в составе различных препаратов;
    • дизайн интерьера и ландшафта — как декорации;
    • ремесло — для изготовления духов, косметических средств, красителей, масел и прочего;
    • в культуре как подарки и сувениры;
    • в науке для исследований генетики.

    Экологическое положение

    Эти растения получили центральную нишу в экосистемах и в какой-то мере повлияли на эволюцию почти всех животных и птиц, для которых они были источником пищи и основой среды обитания. Между тем большую роль в этом деле сыграла и деятельность человека — в частности, окультуривание растений и выведение новых сортов, приспособленных под разные условия.

    Несмотря на это, отдельные виды покрытосеменных находятся под угрозой исчезновения и занесены в Красную книгу. Причиной этого является в основном деятельность людей — вырубка лесов, пожары, осушение и затопление зон для ведения сельского хозяйства, накопление газа в атмосфере.

    Покрытосеменные растения — наиболее распространённая и разнообразная группа представителей флоры. Они играют очень важную роль как в жизни человека, так и в развитии экосистем. Разные классы, подклассы, семейства и виды цветковых могут очень сильно отличаться друг от друга и не иметь почти никаких общих внешних черт и особенностей жизнедеятельности, кроме защищённого околоплодником семени.

    Источник

Одноклеточные и многоклеточные организмы

Одноклеточные и многоклеточные организмы. Ткани и органы.

Необычайное разнообразие живых существ на планете вынуждает находить различные критерии для их классификации. Так, их относят к клеточным и неклеточным формам жизни, поскольку клетки являются единицей строения почти всех известных организмов — растений, животных, грибов и бактерий, тогда как вирусы являются неклеточными формами.

Одноклеточные организмы

В зависимости от количества клеток, входящих в состав организма, и степени их взаимодействия выделяют одноклеточные, колониальные и многоклеточные организмы. Несмотря на то, что все клетки сходны морфологически и способны осуществлять обычные функции клетки (обмен веществ, поддержание гомеостаза, развитие и др.), клетки одноклеточных организмов выполняют функции целостного организма. Деление клетки у одноклеточных влечет за собой увеличение количества особей, а в их жизненном цикле отсутствуют многоклеточные стадии. В целом у одноклеточных организмов совпадают клеточный и организменный уровни организации. Одноклеточными является подавляющее большинство бактерий, часть животных (простейшие), растений (некоторые водоросли) и грибов. Некоторые систематики даже предлагают выделить одноклеточные организмы в особое царство — протистов.

Колониальные организмы

Колониальными называют организмы, у которых в процессе бесполого размножения дочерние особи остаются соединенными с материнским организмом, образуя более или менее сложное объединение — колонию. Кроме колоний многоклеточных организмов, таких как коралловые полипы, имеются и колонии одноклеточных, в частности водоросли пандорина и эвдорина. Колониальные организмы, по-видимому, были промежуточным звеном в процессе возникновения многоклеточных.

Многоклеточные организмы

Многоклеточные организмы, вне всякого сомнения, обладают более высоким уровнем организации, чем одноклеточные, поскольку их тело образовано множеством клеток. В отличие от колониальных, которые также могут иметь более одной клетки, у многоклеточных организмов клетки специализируются на выполнении различных функций, что отражается и в их строении. Платой за эту специализацию является утрата их клетками способности к самостоятельному существованию, а зачастую и к воспроизведению себе подобных. Деление отдельной клетки приводит к росту многоклеточного организма, но не к его размножению. Онтогенез многоклеточных характеризуется процессом дробления оплодотворенной яйцеклетки на множество клеток-бластомеров, из которых в дальнейшем формируется организм с дифференцированными тканями и органами. Многоклеточные организмы, как правило, крупнее одноклеточных. Увеличение размеров тела по отношению к их поверхности способствовало усложнению и совершенствованию процессов обмена, формированию внутренней среды и, в конечном итоге, обеспечило им большую устойчивость к воздействиям окружающей среды (гомеостаз). Таким образом, многоклеточные обладают рядом преимуществ в организации по сравнению с одноклеточными и представляют собой качественный скачок в процессе эволюции. Многоклеточными являются немногие бактерии, большинство растений, животных и грибов.

Дифференцировка клеток у многоклеточных организмов приводит к формированию у растений и животных (кроме губок и кишечнополостных) тканей и органов.

Ткани и органы

Ткань — это система межклеточного вещества и клеток, сходных по строению, происхождению и выполняющих одинаковые функции.

Различают простые ткани, состоящие из клеток одного типа, и сложные, состоящие из нескольких типов клеток. Например, эпидермис у растений состоит из собственно покровных клеток, а также замыкающих и побочных клеток, образующих устьичные аппараты.

Из тканей формируются органы. В состав органа входит несколько типов тканей, связанных структурно и функционально, но обычно один из них преобладает. Например, сердце образовано в основном мышечной, а головной мозг — нервной тканью. В состав листовой пластинки растения входят покровная ткань (эпидермис), основная ткань (хлорофиллоносная паренхима), проводящие ткани (ксилема и флоэма) и др. Однако преобладает в листе основная ткань.

Органы, выполняющие общие функции, образуют системы органов. У растений выделяют образовательные, покровные, механические, проводящие и основные ткани.

Ткани растений

Образовательные ткани

Клетки образовательных тканей (меристем) в течение длительного времени сохраняют способность к делению. Благодаря этому они принимают участие в образовании всех остальных типов тканей и обеспечивают рост растения. Верхушечные меристемы находятся на кончиках побегов и корней, а боковые (например, камбий и перицикл) — внутри этих органов.

Покровные ткани

Покровные ткани расположены на границе с внешней средой, т. е. на поверхности корней, стеблей, листьев и других органов. Они защищают внутренние структуры растения от повреждений, действия низких и высоких температур, излишнего испарения и иссушения, проникновения болезнетворных организмов и т. п. Кроме того, покровные ткани регулируют газообмен и испарение воды. К покровным тканям относятся эпидермис, перидерма и корка.

Механические ткани

Механические ткани (колленхима и склеренхима) выполняют опорную и защитную функции, придавая прочность органам и образуя «внутренний скелет» растения.

Проводящие ткани

Проводящие ткани обеспечивают в организме растения передвижение воды и растворенных в ней веществ. Ксилема доставляет воду с растворенными минеральными веществами от корней ко всем органам растения. Флоэма осуществляет транспорт растворов органических веществ. Ксилема и флоэма обычно расположены рядом, образуя слои или проводящие пучки. В листьях их можно легко заметить в виде жилок.

Основные ткани

Основные ткани, или паренхима, составляют основную часть тела растения. В зависимости от расположения в организме растения и особенностей среды его обитания основные ткани способны выполнять различные функции — осуществлять фотосинтез, запасать питательные вещества, воду или воздух. В связи с этим различают хлорофилл о но сную, запасающую, водоносную и воздухоносную паренхиму.

Как вы помните из курса биологии 6-го класса, у растений выделяют вегетативные и генеративные органы. Вегетативными органами являются корень и побег (стебель с листьями и почками). Генеративные органы подразделяются на органы бесполого и полового размножения.

Органы бесполого размножения растений называются спорангиями. Они располагаются поодиночке или объединяются в сложные структуры (например, сорусы у папоротников, спороносные колоски у хвощей и плаунов).

Органы полового размножения обеспечивают образование гамет. Мужские (антеридии) и женские (архегонии) органы полового размножения развиваются у мхов, хвощей, плаунов и папоротников. Для голосеменных растений характерны только архегонии, развивающиеся внутри семязачатка. Антеридии у них не формируются, и мужские половые клетки — спермин — образуются из генеративной клетки пыльцевого зерна. У цветковых растений отсутствуют как антеридии, так и архегонии. Генеративным органом у них является цветок, в котором происходит образование спор и гамет, оплодотворение, формирование плодов и семян.

Ткани животных

Эпителиальные ткани

Эпителиальные ткани покрывают организм снаружи, выстилают полости тела и стенки полых органов, входят в состав большинства желез. Эпителиальная ткань состоит из клеток, плотно прилегающих друг к другу, межклеточное вещество не развито. Главные функции эпителиальных тканей — защитная и секреторная.

Соединительные ткани

Соединительные ткани характеризуются хорошо развитым межклеточным веществом, в котором поодиночке или группами располагаются клетки. Межклеточное вещество, как правило, содержит большое количество волокон. Ткани внутренней среды — самая разнообразная по строению и функциям группа тканей животных. Сюда относятся костная, хрящевая и жировая ткани, собственно соединительные ткани (плотная и рыхлая волокнистые), а также кровь, лимфа и др. Основные функции тканей внутренней среды — опорная, защитная, трофическая.

Мышечные ткани

Мышечные ткани характеризуются наличием сократительных элементов — миофибрилл, расположенных в цитоплазме клеток и обеспечивающих сократимость. Мышечные ткани выполняют двигательную функцию.

Нервная ткань

Нервная ткань состоит из нервных клеток (нейронов) и клеток глии. Нейроны способны возбуждаться в ответ на действие различных факторов, генерировать и проводить нервные импульсы. Глиальные клетки обеспечивают питание и защиту нейронов, формирование их оболочек.

Ткани животных участвуют в формировании органов, которые, в свою очередь, объединяются в системы органов. В организме позвоночных животных и человека различают следующие системы органов: костную, мышечную, пищеварительную, дыхательную, мочевыделительную, половую, кровеносную, лимфатическую, иммунную, эндокринную и нервную. Кроме того, у животных имеются различные сенсорные системы (зрительная, слуховая, обонятельная, вкусовая, вестибулярная и др.), с помощью которых организм воспринимает и анализирует разнообразные раздражители внешней и внутренней среды.

Любому живому организму свойственно получение из окружающей среды строительного и энергетического материала, обмен веществ и превращение энергии, рост, развитие, способность к размножению и т. п. У многоклеточных организмов разнообразные процессы жизнедеятельности (питание, дыхание, выделение и др.) реализуются благодаря взаимодействию определенных тканей и органов. При этом все процессы жизнедеятельности проходят под контролем регуляторных систем. Благодаря этому сложный многоклеточный организм функционирует как единое целое.

У животных к регуляторным системам относятся нервная и эндокринная. Они обеспечивают согласованную работу клеток, тканей, органов и их систем, обусловливают целостные реакции организма на изменения условий внешней и внутренней среды, направленные на поддержание гомеостаза. У растений жизненные функции регулируются с помощью различных биологически активных веществ (например, фитогормонов).

Таким образом, в многоклеточном организме все клетки, ткани, органы и системы органов взаимодействуют друг с другом, слаженно функционируют, благодаря чему организм представляет собой целостную биологическую систему.

Источник

Подцарство простейшие

Простейшие — одноклеточные организмы. Безусловно, ни о каких тканях, органах не может идти и речи — но это совершенно не означает, что у простейших не идут процессы газообмена, выделения, транспорта питательных веществ — все они идут, но по-особенному.

У простейших одна клетка выполняет все функции целого организма, поэтому клетки имеют сложное строение. Клетки обладают всеми основными жизненными функциями: раздражимостью, размножением, обменом веществ.

Строение простейшего - амебы

Строение клетки простейшего

Форма клетки простейших постоянная, окружена пелликулой — наружным, уплотненным слоем цитоплазмы, который поддерживает постоянную форму. У некоторых простейших (амеба, на рисунке выше) пелликула отсутствует и форма клетки непостоянная, растекающаяся.

Клетка простейших является эукариотической — имеет оформленное ядро, обособленное ядерной мембраной от цитоплазмы. В цитоплазме многих простейших выделяют эктоплазму (периферический наружный, более плотный слой цитоплазмы) и эндоплазму (внутренний зернистый слой цитоплазмы, менее плотный, подвижен).

Типичным для эукариотов является набор органоидов в клетке: митохондрии, эндоплазматический ретикулум (сеть), аппарат (комплекс) Гольджи, запасные питательные вещества (гликоген, жировые включения), рибосомы, лизосомы.

Сократительные вакуоли

Особенностью строения, является наличие в клетке простейших сократительных вакуолей, которые служат для поддержания осмотического давления. В клетку простейших постоянно поступает избыток воды, и, чтобы клетку не разорвало от повышенного давления, вода постоянно удаляется из клетки. Таким образом, функцию выделения выполняют сократительные вакуоли.

Работа сократительных вакуолей

Работа сократительной вакуоли подчинена определенному механизму. Сначала лучистые канальцы, расположенные вокруг вакуоли, накапливают воду. При скоплении в них достаточно большого количества воды они изливают ее в центральную полость — сократительную вакуоль. Вакуоль сокращается и избыток воды удаляется из клетки во внешнюю среду, таким образом, разрыв клетки предотвращается.

Хемотаксис

Поскольку нервная система отсутствует, раздражимость у простейших осуществляется с помощью хемотаксиса. Хемотаксис — движение подвижных организмов под влиянием одностороннего раздражения химическими веществами. Хемотаксис может быть положительным (движение по направлению к химическому веществу) или отрицательным (движение в обратном направлении, от химического вещества).

Пищеварительная система также отсутствует, ее функция передана пищеварительным вакуолям. Тип питания — внутриклеточный, осуществляется с помощью фагоцитоза (от греч. phago — ем) — захват и переваривание твердых пищевых частиц, и пиноцитоза (от греч. pino — пью) — захват и транспортировка жидкости.

На рисунке ниже показаны стадии фагоцитоза. Фагоцитоз был открыт Мечниковым И.И., создателем фагоцитарной теории иммунитета. Отмечу, что адгезия (от лат. adhaesio — прилипание) — сцепление между клеткой и твердой пищевой частицей (другой клеткой, например бактерией), которую она собирается поглотить.

Фагоцитоз

Дыхание

Очевидно, что органов дыхания у простейших нет. Простейшие дышат всей поверхностью клетки.

Размножение

У простейших возможно бесполое и половое размножение. Бесполое осуществляется с помощью деления (митоз), шизогонией, спорообразованием (мейоз). Половое — с помощью копуляции и конъюгации.

Шизогония (от греч. schizo — разделяю) — множественное бесполое размножение, при котором, вследствие деления без разрыва цитоплазматической мембраны, клетка становится многоядерной, а затем распадается на множество дочерних клеток (соответственно количеству ядер).

Шизогония простейших

Копуляция (от лат. copulatio — совокупление) — слияние как плазмы, так и ядер обеих копулирующих гаплоидных (n) особей.

Конъюгация (от лат. conjugatio — соединение) — временное соединение двух особей, которые при этом обмениваются частями своего ядерного аппарата и цитоплазмой. В ходе конъюгации инфузорий объединяются их пронуклеусы, образовавшиеся в результате деления малого ядра (микронуклеуса) мейозом. После конъюгации происходит энергичное деление особей.

Конъюгация у инфузорий

Значение простейших

Простейшие являются звеном в цепи питания. Фитопланктон (продуценты) — создатели органических веществ, служащие пищей для многих организмов. Зоопланктон (консументы) — питаются фитопланктоном и сами служат пищей для других организмов. Часть простейших являются причинами многих паразитарных заболеваний человека, растений и животных.

Простейшие паразиты

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник



Одноклеточные и многоклеточные организмы

вопрос А3 ГИА по биологии

Давайте разберем особенности строения и жизнедеятельности одноклеточных и многоклеточных организмов по царствам, заодно и перечислим важнейших представителей каждого.

1. Одноклеточные и многоклеточные организмы — бактерии

строение бактерии

Бесполое:

  • просто напополам (бинарное) или
  • почкованием;
  • спорообразование (для переживания неблагоприятных условий)

Половое

У бактерий, нет, конечно, мужских и женских клеток. «Половое» — означает обмен генетической информацией.

  1. Брожение — анаэробный (бесктслородный) процесс диссимиляции
  2. Дыхание — бактерии вместо кислорода используют кислородсодержащие органические и минеральные вещества (хемосинтез)
  3. Фотосинтез бескислородный — зеленые и пурпурные бактерии используют бактериохлорофилл;
  4. Фотосинтез кислородный — цианобактерии используют хлорофилл.
  • паразитические (патогенные)
  • симбиотические
  • индиффирентые

Одноклеточные бактерии (наиболее часто встречающиеся): (могут объединяться, образовывать агрегат) :

  • кокки — шарообразная (сферическая форма);
  • извитая форма — спириллы и вибрионы — несколько клеток объединяются, вытянувшись в цепочку;
  • форма грозди — стафилококки;
  • палочковидные — кишечные бактерии;

Многоклеточные бактерии: это в основном, цианобактерии и актиномицеты.

А3 вариант 1 ГИА по биологии

Ответ: 2) бактерии — симбиоты обоготят почву азотом, как следствие, повысится урожайность.

2. Одноклеточные и многоклеточные организмы — растения

Растения — это практически всегда организмы — автотрофы (продуценты), очень редко встречаются растения — гетеротрофы).

Бесполое:

  • вегетативное;
  • бесполое (образование зооспор);

Половое

Есть как у одноклеточных, так и у многоклеточных растений.

  • паразитические
  • симбиотические
  • индиффирентые

Одноклеточные растения: одноклеточные водоросли, растительные протисты,
Многоклеточные растения: многоклеточные водоросли (ламинария, саргассум), споровые и семенные растения.

У многоклеточных растений (кроме водорослей) клетки объединяются в ткани и в органы. В соответствии с функциями тканей, клетки имеют определенную специфику (см. ткани растений).

На пересечении двух царств — растительного и животного стоит Эвглена зеленая — организм, способный и к автотрофному, и к гееротрофному питанию.

3. Одноклеточные и многоклеточные организмы — животные

Животные — это гетеротрофные организмы. Это консументы самых различных порядков.

Бесполое:

  • амитоз
  • почкование

Половое

  • «Половое» — обмен генетической информацией и
  • Половое (мейоз)- настоящее половое размножение у многоклеточных организмов.

Одноклеточные животные: класс корненожки (амеба),

класс жгутиковые (лямблия, эвглена),

класс инфузории (инфузория-туфелька),

класс споровики (малярийный плазмодий).

Многоклеточные животные: клетки объединены в ткани, ткани — в органы и даже системы органов.

А3

Ответ: 1) эпителиальная ткань

4. Одноклеточные и многоклеточные организмы — грибы

Грибы — это организмы —деструкторы, это гетеротрофы.

грибы

Бесполое:

  • образование спор;
  • вегетативное (отпочковывание)

Половое

  • паразитические (патогенные)
  • симбиотические
  • индиффирентые

Ответ на вопрос в самом начале лекции — 1) мицелий низших грибов — многоядерные клетки-нити

Источник

—>Сайт учителя биологии и географии Лотоцкой Е. Г. —>

3.2. Воспроизведение организмов, его значение. Способы размножения, сходство и отличие полового и бесполого размножения. Оплодотворение у цветковых растений и позвоночных животных. Внешнее и внутреннее оплодотворение.

Блок 3. Организм как биологическая система

3.3. Онтогенез и присущие ему закономерности. Эмбриональное и постэмбриональное развитие организмов. Причины нарушения развития организмов.

Блок 3. Организм как биологическая система

3.4. Генетика, ее задачи. Наследственность и изменчивость – свойства организмов. Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме.

Блок 3. Организм как биологическая система

3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно- и дигибридное скрещивание). Законы Т. Моргана: сцепленное наследование признаков, нарушение сцепления генов. Генетика пола. Наследование признаков, сцепленных с полом. Взаимодействие генов. Генотип как целостная система. Генетика человека. Методы изучения генетики человека. Решение генетических задач. Составление схем скрещивания.

Блок 3. Организм как биологическая система

3.6. Закономерности изменчивости. Ненаследственная (модификационная) изменчивость. Норма реакции. Наследственная изменчивость: мутационная, комбинативная. Виды мутаций и их причины. Значение изменчивости в жизни организмов и в эволюции.

Блок 3. Организм как биологическая система

3.7. Значение генетики для медицины. Наследственные болезни человека, их причины, профилактика. Вредное влияние мутагенов, алкоголя, наркотиков, никотина на генетический аппарат клетки. Защита среды от загрязнения мутагенами. Выявление источников мутагенов в окружающей среде (косвенно) и оценка возможных последствий их влияния на собственный организм.

Блок 3. Организм как биологическая система

3.8. Селекция, её задачи и практическое значение. Вклад Н. И. Вавилова в развитие селекции: учение о центрах многообразия и происхождения культурных растений; закон гомологических рядов в наследственной изменчивости. Методы селекции и их генетические основы. Методы выведения новых сортов растений, пород животных, штаммов микроорганизмов. Значение генетики для селекции. Биологические основы выращивания культурных растений и домашних животных.

Блок 3. Организм как биологическая система

3.9. Биотехнология, ее направления. Клеточная и генная инженерия, клонирование. Роль клеточной теории в становлении и развитии биотехнологии. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты. Этические аспекты развития некоторых исследований в биотехнологии (клонирование человека, направленные изменения генома).

4.1. Многообразие организмов. Значение работ К. Линнея и Ж-Б. Ламарка. Основные систематические (таксономические) категории: вид, род, семейство, отряд (порядок), класс, тип (отдел), царство; их соподчиненность. Вирусы — неклеточные формы жизни. Меры профилактики распространения вирусных заболеваний.

Многообразие организмов

В настоящее время на Земле известно около 2 млн. видов живых организмов (по некоторым оценкам общее количество видов может достигать 5–10 млн), что чрезвычайно затрудняет ориентирование в данном изобилии. В связи с этим сформировался особый раздел биологии, задачей которого является описание и обозначение всех существующих и вымерших видов организмов, а также их классификация по различным группам — систематика.
Классифицировать организмы можно по любому принципу, например по о . Читать дальше »

Источник

Одноклеточные и многоклеточные животные егэ

Код ЕГЭ: 3.1. Разнообразие организмов: одноклеточные и многоклеточные;
автотрофы, гетеротрофы, аэробы, анаэробы

Общая характеристика одноклеточных

К одноклеточным организмам относят практически всех прокариот и некоторые группы эукариот. Часть прокариот переходит к колониальному образу жизни (см. ниже «Колониальные организмы»). Большинство же эукариот являются многоклеточными.

К одноклеточным эукариотам относится множество очень отличающихся друг от друга организмов, которых объединяет один признак — их единственная клетка является в то же время и целым организмом. Хотя в целом они устроены как типичная эукариотическая клетка, однако зачастую могут иметь дополнительные органеллы.

СТРОЕНИЕ. Поверхностный аппарат клетки, отделяющий организм одноклеточного от окружающей среды, зачастую устроен очень сложно. Как и у других клеток, его главная часть — плазмалемма. Надмембранный аппарат может быть представлен гликокаликсом, клеточными стенками различного химического состава, различными чешуйками и домиками (например, как у диатомовых водорослей). Подмембранный комплекс включает различные элементы цитоскелета, именно с ним связано передвижение одноклеточных эукариот. В состав подмембранного комплекса входят основания ресничек и жгутиков, с помощью трансформации элементов цитоскелета происходит движение псевдоподий (ложноножек). С цитоскелетом подмембранного комплекса связаны особые органеллы, которые характерны только для одноклеточных, — экструсомы. Это окружённые мембраной органеллы, которые служат для нападения и защиты.

Ядро у одноклеточных эукариот имеет типичное строение, но у некоторых организмов на протяжении всей жизни или на определённых этапах жизненного цикла в клетке содержится несколько (иногда до сотни) ядер. У инфузорий имеются ядра двух типов: небольшой микронуклеус (генеративное ядро), хранящий генетическую информацию и участвующий в половом процессе, и макронуклеус (вегетативное ядро) — крупное ядро, отвечающее за все процессы жизнедеятельности.

В цитоплазме некоторых одноклеточных эукариот (преимущественно пресноводных) имеются сократительные вакуоли, служащие для осморегуляции. Это одномембранные органеллы, снабжённые выводным каналом, выходящим на поверхность клетки. У инфузорий в состав сократительной вакуоли входит центральный резервуар и радиально расходящиеся канальцы. В сократительную вакуоль поступает жидкость, которая при периодическом сокращении вакуоли выводится наружу.

ПИТАНИЕ. По типу питания среди одноклеточных эукариот имеются как автотрофы, так и гетеротрофы. У автотрофов имеются хлоропласты различной формы (например, чашевидные, лентообразные). Кроме хлорофилла, хлоропласты могут содержать другие пигменты, служащие для лучшего улавливания солнечного света. Гетеротрофные организмы питаются различными органическими частицами или небольшими организмами (бактериями, другими одноклеточными и т. д.). Частицы захватываются при помощи ложноножек в ходе заглатывания частиц (фагоцитоза) или капель (пиноцитоза). У некоторых одноклеточных эукариот имеется особый участок клетки — клеточный рот (цитостом), в котором происходит захват пищевых частиц. Переваривание осуществляется в содержащих пищеварительные ферменты пищеварительных вакуолях (лизосомах).

Тип питания некоторых организмов зависит от образа жизни и среды обитания. Так, эвглена на свету питается автотрофно, производя органические вещества в ходе фотосинтеза, а в темноте переходит к гетеротрофному питанию, поглощая растворённые в воде питательные вещества.

Одноклеточные и многоклеточные

СРЕДА ОБИТАНИЯ. Одноклеточные эукариоты обитают практически повсеместно, уступая в этом отношении только бактериям. Они распространены в пресных и солёных водоёмах, в почве, иногда живут на суше, хотя обычно для них необходима капельная влага. Также часто протисты (другое название одноклеточных эукариот) населяют другие организмы.

В водоёмах они входят в состав планктона и бентоса, являются пищей для многих водных организмов. Однако планктонные водоросли, размножаясь в огромных количествах, могут вызывать «цветение» воды, вызывающее гибель многих водных организмов.

Жизнь почвенных одноклеточных обычно имеет две стадии: активную (во время которой происходит питание, рост и размножение) и период покоя. Период покоя наступает вследствие различных причин: недостатка питательных веществ или кислорода, слишком высокой плотности популяции, сухости, накопления различных химических веществ, низкой температуры и др. Хотя существует мнение, что для некоторых видов стадия покоя в жизненном цикле является обязательной. Почвенные одноклеточные принимают участие в почвообразовании и повышают плодородие почв.

В теле многих губок, коралловых полипов, некоторых плоских червей и моллюсков могут обитать водоросли, дающие своим хозяевам кислород и питательные вещества и получающие от них убежище. Такая группа организмов, как лишайники, представляет собой сожительство гриба и водоросли. Обитая в кишечнике различных организмов (термитов и жвачных парнокопытных), они помогают хозяину переваривать пищу.

При паразитизме хозяину наносится вред. Паразитизм среди одноклеточных эукариот распространён довольно широко: они могут вызывать множество заболеваний животных и растений.

Колониальные организмы

Одноклеточные организмы могут объединяться в некое подобие многоклеточного организма, т. е. образовывать колонии. Отдельные особи в колонии могут быть неотличимы друг от друга (некоторые виды зелёных водорослей или инфузорий) или иметь достаточно сильные отличия и даже выполнять различные функции. Колонии образуются в результате бесполого размножения: при делении дочерняя клетка не отделяется от материнской, а остаётся связанной с ней.

Наиболее сложно устроены колонии вольвокса — представителя зелёных водорослей. Это полые шары величиной до 2 мм, они могут включать до 60 тыс. отдельных клеток. По краям колонии находятся двужгутиковые клетки, обеспечивающие передвижение. Кроме них имеются более крупные неподвижные репродуктивные клетки, которые, размножаясь, дают новые колонии. Дочерние колонии развиваются внутри материнской, а затем выходят из неё.

Полагают, что колониальные организмы являются связующим звеном между одноклеточными и многоклеточными организмами, и возникновение многоклеточности происходило через колониальность, причём в разных группах организмов неоднократно.

Общая характеристика многоклеточных организмов

Тело многоклеточных организмов во взрослом состоянии состоит из множества клеток и их производных (межклеточное вещество). Их клетки различаются по строению и выполняемым функциям, т. е. проявляется дифференциация клеток. Клетки, сходные по строению и происхождению, объединяются в ткани.

Грибы, однако, не имеют настоящих тканей, поэтому некоторыми учёными они не включаются в состав многоклеточных организмов. Из различных тканей образуются органы, которые у многоклеточных животных объединяются в системы органов, выполняющие определённую функцию (дыхание, выделение, пищеварение и т. д.).

Для многоклеточных организмов характерен сложный процесс индивидуального развития (онтогенез). Он начинается в большинстве случаев (за исключением вегетативного размножения) с деления одной клетки — зиготы (оплодотворённой яйцеклетки) — или споры.

Многоклеточность возникала в ходе эволюции неоднократно, она развивалась параллельно у разных групп организмов. Существует несколько гипотез возникновения многоклеточного организма, но все они сходятся в том, что многоклеточность возникла из колониальности.

Многоклеточные организмы могут образовывать колонии, которые образуются в результате вегетативного (бесполого) размножения, когда дочерняя особь остаётся связанной с материнской. Особи в колонии могут быть связаны в разной степени, зачастую их объединяет общее пищеварение. Между отдельными организмами колонии может происходить разделение функций.

Автотрофы, гетеротрофы

По типам питания все живые организмы подразделяются на две группы:

  • Автотрофные. К ним относятся фототрофы – зеленые растения, и хемотрофы – некоторые протисты, грибы и бактерии. Это организмы, являющиеся продуцентами, производящие органические вещества из неорганических. Они располагаются схематично на первой ступени экологической пирамиды.
  • Гетеротрофные. Это – организмы, питающиеся органическими веществами, произведенными другими их видами. В экологической пирамиде занимаются все уровни, кроме нижнего, на котором расположены автотрофы. В свою очередь гетеротрофные организмы разделяются на консументов – потребителей и редуцентов, разлагающих органику до простых органических и неорганических веществ. При этом, растительноядные животные являются гетеротрофами первого уровня, хищники, поедающие растительноядных – гетеротрофами второго уровня, хищники питающиеся хищниками – третьего и так далее.

Аэробы, анаэробы

По отношению к кислороду живые организмы делятся на четыре большие группы:

  • Облигатные аэробы – тех, кто не может жить без кислорода, так как невозможными становятся процессы клеточного дыхания. К ним относятся большинство животных и зеленые растения.
  • Микроаэрофилы – это некоторые виды бактерий, которым для жизнедеятельности необходимо небольшое количество кислорода – около 2 %.
  • Факультативные анаэробы – живые организмы, которые могут обходиться без кислорода, но способны переключиться на кислородное дыхание. Это маслянокислые и молочнокислые бактерии, дрожжи.
  • Облигатные анаэробы – эти организмы гибнут в кислородной среде. К ним относятся хемосинтезирующие бактерии и археи.

Анаэробные бактерии играют важную роль в круговороте вещества, делая его доступным для других участников экологических систем. Биологически же, анаэробный способ получения энергии намного менее эффективен, чем кислородное дыхание. Так, например, при дыхании образуется из одной молекулы глюкозы 38 молекул АТФ, а при бескислородном ее сбраживании – 2 молекулы.

Это конспект по теме «Одноклеточные и многоклеточные организмы». Выберите дальнейшие действия:

Источник

Одноклеточные и многоклеточные организмы

Свойства живых систем

Всем уровням организации живой материи присущи черты, отличающие ее от неживой материи. Рассмотрим общие, характерные для всего живого свойства и их отличия от сходных процессов, протекающих в неживой природе.

1. Особенности химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живой и неживой природе неодинаково. Элементарный состав неживой природы, наряду с кислородом, представлен в основном кремнием, железом, магнием, алюминием и т. д. В живых организмах 98% их массы приходится на четыре элемента: водород, кислород, углерод и азот.

2. Обмен веществ. Все живые организмы способны к обмену веществ с окружающей средой, поглощают из нее вещества, необходимые для питания, и выделяют наружу продукты жизнедеятельности.

Отметим, что в неживой природе также существует обмен веществами. Однако при небиологическом круговороте веществ они просто переносятся с одного места на другое или меняется их агрегатное состояние (например, смыв почвы, превращение воды в пар или лед, растворение или кристаллизация минеральных соединений).

В отличие от обменных процессов, происходящих в неживой природе, у живых организмов они имеют качественно иной уровень. В круговороте органических веществ самыми существенными являются процессы синтеза и распада.

Живые организмы поглощают из окружающей среды различные вещества. Вследствие целого ряда сложных химических превращений вещества из окружающей среды усваиваются веществами живого организма, и из них строится его тело. Эти процессы называют ассимиляцией, пластическим обменом, или анаболизмом.

Приведем несколько примеров. Растения из двуокиси углерода и воды строят углеводы — крахмал и целлюлозу, которые используются как запасные питательные вещества и строительный материал. Белок куриного яйца в организме человека претерпевает целый ряд сложных превращений, прежде чем преобразуется в белки, свойственные нашему организму, — гемоглобин, кератин и др.

Другая сторона обмена веществ — процессы диссимиляции (катаболизм), в результате которых сложные органические соединения распадаются на простые, при этом утрачивается их сходство с веществами организма и выделяется энергия, необходимая для реакции биосинтеза. Обмен веществ обеспечивает постоянство химического состава и строения всех частей организма и, как следствие, постоянство функционирования в непрерывно меняющихся условиях окружающей среды.

3. Самовоспроизведение (репродукция). Способность к размножению, т. е. воспроизведению нового поколения особей того же вида, — одно из основных свойств живых организмов. Потомство в основных своих чертах обычно похоже на родителей. Из семян одуванчика вырастает одуванчик. Деление одноклеточного организма — амебы — приводит к образованию двух амеб, полностью схожих с материнской клеткой. Таким образом, размножение — это свойство организмов воспроизводить себе подобных.

Что лежит в основе процесса самовоспроизведения? Обратим внимание на то, что этот процесс осуществляется практически на всех уровнях организации живой материи. Благодаря репродукции не только целые организмы, но и клетки, органеллы клеток (митохондрии, пластиды и др.) после деления сходны со своими предшественниками. Из одной молекулы ДНК при ее удвоении образуются две дочерние молекулы, полностью повторяющие исходную.

В основе самовоспроизведения лежат реакции матричного синтеза, т. е. образования новых молекул и структур на основе информации, заложенной в последовательности нуклеотидов ДНК. Следовательно, самовоспроизведение — одно из основных свойств живого, тесно связанное с явлением наследственности.

4. Наследственность заключается в способности организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Она обусловлена стабильностью, т. е. постоянством строения молекул ДНК.

5. Изменчивость. Это свойство как бы противоположно наследственности, но вместе с тем тесно связано с ней, так как при этом изменяются наследственные факторы — гены, определяющие развитие тех или иных признаков. Если бы репродукция матриц — молекул ДНК — всегда происходила с абсолютной точностью, то при размножении организмов осуществлялась бы преемственность только существовавших прежде признаков, и приспособление видов к меняющимся условиям среды оказалось бы невозможным. Следовательно, изменчивость — это
способность организмов приобретать новые признаки и свойства. В основе ее лежит изменение биологических матриц.

Изменчивость создает разнообразный исходный материал для естественного отбора, т. е. отбора особей, наиболее приспособленных к конкретным условиям существования в природных условиях, что в свою очередь приводит к появлению новых форм жизни, новых видов организмов.

6. Рост и развитие. Способность к развитию — всеобщее свойство материи. Под развитием понимают необратимое направленное закономерное изменение объектов живой и неживой природы. В результате развития возникает новое качественное состояние объекта, вследствие чего изменяется его состав или структура. Развитие живой формы существования материи представлено индивидуальным развитием, или онтогенезом, и историческим развитием, или филогенезом.

Онтогенез постепенно и последовательно проявляет индивидуальные свойства организмов. Независимо от способа размножения все особи, образующиеся из одной зиготы или споры, почки или клетки, получают по наследству только генетическую информацию, т. е. возможность проявить те или иные признаки. В процессе развития возникает специфическая структурная организация индивида. Развитие сопровождается ростом — увеличением его массы. Оно обусловлено репродукцией макромолекул, элементарных структур клеток, самих клеток.

Эволюция — это необратимое и направленное историческое развитие живой природы, сопровождающееся образованием новых видов и прогрессивным усложнением форм жизни. Результатом эволюции является все многообразие живых организмов на Земле.

7. Раздражимость. Любой организм неразрывно связан с окружающей средой: он извлекает из нее питательные вещества, подвергается воздействию неблагоприятных факторов среды, вступает во взаимодействие с другими организмами и т. д. В процессе эволюции у живых организмов выработалось и закрепилось свойство избирательно реагировать на изменение внешней и внутренней среды. Это свойство носит название раздражимости. Всякое изменение условий окружающей организм среды представляет собой по отношению к нему раздражение, а его реакция на внешние раздражители служит показателем его чувствительности и проявления раздражимости.

Реакция многоклеточных животных на раздражение осуществляется через посредство нервной системы и называется рефлексом. Их реакции, выражающиеся в изменении характера движения или роста, принято называть таксисами или тропизмами, прибавляя для их обозначения название раздражителя. Например, фототаксис — движение по отношению к источнику света, хемотаксис — перемещение организма по отношению к концентрации химических веществ. Таксис может быть положительным или отрицательным в зависимости от того, действует раздражитель на организм привлекающим или отталкивающим образом.

Под тропизом понимают определенный характер роста, который свойствен растениям. Так, гелиотропизм означает рост наземных частей растений (стебля, листьев) по направлению к
Солнцу, а геотропизм — рост подземных частей (корней) в направлении к центру Земли.

8. Дискретность. Само слово “дискретность” произошло от лат. discretus, что означает “прерывистый”, “разделенный”. Дискретность — всеобщее свойство материи. Так, из курса
физики и общей химии известно, что каждый атом состоит из элементарных частиц, а молекулы формируются из атомов. Из простых молекул образуются более сложные соединения или
кристаллы и т. д.

Жизнь на Земле также проявляется в виде дискретных форм. Это означает, что отдельный организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, т. е. обособленных или отграниченных в пространстве, но, тем не менее, тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное
единство. Например, любой вид организмов представлен отдельными особями. В теле высокоорганизованной особи можно выделить пространственно отграниченные органы, которые, в свою очередь, состоят из отдельных клеток. Энергетический аппарат клетки представлен отдельными митохондриями, аппарат синтеза белка — рибосомами, и т. д., вплоть до макромолекул, каждая из которых может выполнять свою функцию, лишь будучи пространственно изолированной от других.

Дискретность строения организма — основа его структурной упорядоченности. Она создает возможность его постоянного самообновления путем замены “износившихся” структурных элементов (молекул, органоидов клетки, целых клеток) с сохранением выполняемой функции.

Дискретность вида представляет собой возможность его эволюции путем гибели или устранения от размножения неприспособленных особей и сохранения индивидов с полезными для выживания признаками.

9. Саморегуляция (авторегуляция). Это способность живых организмов, обитающих в непрерывно меняющихся условиях окружающей среды, поддерживать постоянство своего химического состава и интенсивность течения физиологических процессов. Так, недостаток поступления каких-либо питательных веществ мобилизует внутренние ресурсы организма, а избыток вызывает запасание этих веществ. Подобные реакции осуществляются разными путями благодаря деятельности регуляторных систем — нервной и эндокринной.

Сигналом для включения той или иной системы регуляции может быть изменение концентрации какого-либо вещества или состояния какой-либо системы. Например, понижение концентрации АТФ (аденозинтрифосфата) — универсального аккумулятора (накопителя) и переносчика энергии в клетке — служит сигналом, запускающим процесс его синтеза. Наоборот, восполнение запасов АТФ прекращает интенсивный синтез этого вещества. Повышение концентрации глюкозы в крови приводит к усилению выработки гормона поджелудочной железы — инсулина, уменьшающего содержание сахара в крови. Снижение уровня глюкозы в крови угнетает выделение гормона в кровяное русло. Уменьшение числа клеток в ткани (в результате травмы)
вызывает усиленное размножение оставшихся клеток; восстановление нормального количества клеток дает сигнал о прекращении интенсивного клеточного деления.

10. Ритмичность. Это свойство присуще как живой, так и неживой природе. Обусловлено оно различными космическими и планетарными причинами: вращением Земли вокруг Солнца, сменой времен года, фаз Луны и т. д.

Для неживой природы характерны, например, изменения освещенности и температуры в течение года и суток, приливы и отливы в морях и океанах, перемещение воздушных масс и т. д.

Повсюду в живой и неживой природе распространены колебательные процессы.

Океанские приливы и отливы, смена дня и ночи, фаз Луны, чередование времен года, периодическое увеличение солнечной активности, цикличность геологических процессов, в том числе периодическая смена суши морем и моря сушей, — все это разные формы колебательных процессов.

Периодические изменения в окружающей среде оказывают глубокое влияние на живую природу и на собственные ритмы живых организмов. Ритм — это повторение одного и того же события или воспроизведение одного и того же состояния через равные промежутки времени. В биологии под ритмичностью понимают изменения интенсивности физиологических функций с различными периодами (от нескольких секунд до лет и столетий). Хорошо известны суточные ритмы сна и бодрствования у человека, сезонные ритмы активности и спячки у некоторых млекопитающих и многие другие.

Ритмичность направлена на согласование функций организма с окружающей средой, т. е. на приспособление к меняющимся условиям существования.

11. Энергозависимость. Живые тела представляют собой “открытые” для поступления энергии системы. Это понятие заимствовано из физики. Под “открытыми” системами понимают
системы, в которых непрерывно происходят поглощение и удаление веществ, а также обмен энергией с окружающей средой. Живые организмы существуют до тех пор, пока к ним поступают энергия и материя в виде пищи из окружающей среды. Следует отметить, что живые организмы, в отличие от объектов неживой природы, отграничены от окружающей среды оболочками (наружная клеточная мембрана у одноклеточных, покровная ткань у многоклеточных). Эти оболочки выполняют защитную функцию, обеспечивают постоянство внутренней среды, затрудняют обмен веществом между органами и внешней средой, поддерживают пространственное единство биологических систем.

Таким образом, живые организмы резко отличаются от объектов физики и химии — неживых систем — своей исключительной сложностью и высокой структурной функциональной упорядоченностью. Эти отличия придают жизни качественно новые свойства. Живое представляет собой особую ступень развития материи.

На самом деле очень трудно дать строгое определение понятия “жизнь”. Одно из определений с материалистических позиций более 100 лет назад дал Ф. Энгельс в произведении “Диалектика природы”: “Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел”. В это определение вошли два важных положения: 1) жизнь тесно связана с белковыми телами; 2) непременное условие жизни — постоянный обмен веществ, с прекращением которого прекращается и жизнь.

Достижения биологии нашего времени позволили вскрыть новые черты, характерные для живых организмов, и на этом основании дать более подробное определение понятия “жизнь”. Современные ученые определяют это понятие так: живые тела представляют собой открытые саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот.

Источник

Свойства живых организмов

Выделение общих свойств живых организмов позволят однозначно отличать живое от неживого. Точного определения, что такое жизнь или живой организм, нет, поэтому живое идентифицируют по комплексу его свойств, или признаков.

В отличие от тел неживой природы, живые организмы отличаются сложностью строения и функциональности. Но если рассматривать каждое свойство отдельно, то некоторые из них в той или иной форме можно наблюдать в неживой природе. Например, расти могут и кристаллы. Поэтому так важна совокупность свойств живых организмов.

На первый взгляд наблюдаемое многообразие организмов создает трудности для выявления их общих свойств и признаков. Однако по мере исторического развития биологических наук становились очевидными многие общие закономерности жизни, наблюдаемые у совершенно разных групп организмов.

Кроме ниже перечисленных свойств живого, также часто выделяют единство химического состава (схожесть у всех организмов и отличие соотношений элементов между живым и неживым), дискретность (организмы состоят из клеток, виды из отдельных особей и т. п.), участие в процессе эволюции, взаимодействие организмов между собой, подвижность, ритмичность и др.

Однозначного перечня признаков живого нет, отчасти это вопрос философский. Нередко, выделяя одно свойство, второе становится его следствием. Есть признаки живого, состоящие из ряда других. Кроме того, свойства живого тесно взаимосвязаны между собой, и эта взаимозависимость в совокупности дает такое уникальное явление природы как жизнь.

Обмен веществ – основное свойство живого

Все живые организмы осуществляют обмен веществ с окружающей средой: определенные вещества поступают в организм из среды, другие — выделяются в среду из организма. Это характеризует организм как открытую систему (также поток через систему энергии и информации). Наличие избирательного обмена веществ свидетельствует о том, что организм жив.

Обмен веществ в самом организме включает два противоположных, но взаимосвязанных и сбалансированных процесса — ассимиляцию (анаболизм) и диссимиляцию (катаболизм). Каждый из них состоит из многочисленных химических реакций, объединенных и упорядоченных в циклы и цепи превращения одних веществ в другие.

В результате ассимиляции образуются и обновляются структуры организма за счет синтеза необходимых сложных органических веществ из более простых органических, а также неорганических веществ. В результате диссимиляции происходит расщепление органических веществ, при этом образуются необходимые организму для ассимиляции более простые вещества, а также в молекулах АТФ запасается энергия.

Обмен веществ требует притока веществ извне, а ряд продуктов диссимиляции не находят применения в организме и должны из него удаляться.

Все живые организмы так или иначе питаются. Пища служит источником необходимых веществ и энергии. Растения питаются за счет процесса фотосинтеза. Животные и грибы поглощают органические вещества других организмов, после чего расщепляют их на более простые компоненты, из которых синтезируют свои вещества.

Для живых организмов свойственно выделение ряда веществ (у животных это в основном продукты расщепления белков — азотистые соединения), представляющих собой конечные продукты обмена веществ.

Пример ассимиляционного процесса — это синтез белка из аминокислот. Пример диссимиляции — окисление органического вещества при участии кислорода, в результате чего образуются углекислый газ (CO2) и вода, которые выводятся из организма (вода может использоваться).

Энергозависимость живого

Для осуществления процессов жизнедеятельности организмам необходим приток энергии. В гетеротрофные организмы она поступает вместе с пищей, то есть обмен веществ и поток энергии у них связаны. При расщеплении питательных веществ энергия высвобождается, запасается в других веществах, часть рассеивается в виде тепла.

Растения являются автотрофами и получают первоначальную энергию от Солнца (они улавливают его излучение). Эта энергия идет на синтез первичных органических веществ (в коих она и запасается) из неорганических. Это не значит, что в растениях не протекают химические реакции распада (диссимиляции) органических веществ для получения энергии. Однако растения не получают извне органику посредством питания. Она у них полностью «своя».

Энергия идет на поддержку упорядоченности, структурированности живых организмов, что важно для протекания многочисленных химических реакций в них. Противостояние энтропии — важное свойство живого.

Дыхание — это характерный для живых организмов процесс, в результате которого происходит расщепление высокоэнергетических соединений. Высвобождаемая при этом энергия запасается в АТФ.

В неживой природе (когда процессы пущены на самотек) структурированность систем рано или поздно утрачивается. При этом устанавливается то или иное равновесие (например, горячее тело отдает тепло другим, температура тел выравнивается). Чем меньше упорядоченность, тем больше энтропия. Если система закрыта и в ней протекают процессы, которые не уравновешивают друг друга, то энтропия увеличивается (второй закон термодинамики). Живые организмы обладают свойством уменьшать энтропию путем поддержания внутренней структуры за счет притока энергии из вне.

Наследственность и изменчивость как свойство живого

В основе самообновления структур живых организмов, а также размножения (самовоспроизведения) организмов лежит наследственность, которая связана с особенностями молекул ДНК. При этом в ДНК могут появляться изменения, которые приводят к изменчивости организмов и обеспечивают возможность процесса эволюции. Таким образом, живые организмы обладают генетической (биологической) информацией, что также можно обозначить как основной и исключительный признак живого.

Несмотря на способность к самообновлению, она у организмов не вечна. Продолжительность жизни особи ограничена. Однако живое остается бессмертным благодаря процессу размножения, которое может быть как половым, так и бесполым. При этом происходит наследование признаков родителей путем передачи ими потомкам своей ДНК.

Биологическая информация записана с помощью особого генетического кода, который универсален для всех организмов на Земле, что может говорить о единстве происхождения живого.

Генетический код хранится и реализуется в биологических полимерах: ДНК, РНК, белках. Такие сложные молекулы также являются особенностью живого.

Информация, хранимая в ДНК, при переносе на белки выражается для живых организмов в таких их свойствах как генотип и фенотип. Все организмы обладают ими.

Рост и развитие — свойства живых организмов

Рост и развитие — это свойства живых организмов, реализуемые в процессе их онтогенеза (индивидуального развития). Рост — это увеличение размеров и массы тела с сохранением общего плана строения. В процессе развития организм меняется, он приобретает новые признаки и функциональность, другие — могут быть утеряны. То есть в результате развития возникает новое качественное состояние. У живых организмов обычно рост сопровождается развитием (или развитие ростом). Развитие направлено и необратимо.

Кроме индивидуального развития выделяют историческое развитие жизни на Земле, которое сопровождается образованием новых видов и усложнением жизненных форм.

Хотя рост можно наблюдать и в неживой природе (например, у кристаллов или пещерных сталагмитов), его механизм у живых организмов иной. В неживой природе рост осуществляется за счет простого присоединения вещества к наружной поверхности. Живые организмы растут за счет питательных веществ, поступающих внутрь. При этом у них увеличиваются не столько сами клетки, сколько возрастает их количество.

Раздражимость и саморегуляция

Живые организмы обладают свойством в определенных пределах изменять свое состояние в зависимости от условий как внешней, так и внутренней среды. В процессе эволюции у видов выработались различные способы регистрации параметров среды (среди прочего посредством органов чувств) и ответной реакции на разные раздражители.

Раздражимость живых организмов избирательна, то есть они реагируют только на то, что важно для сохранения их жизни.

Раздражимость лежит в основе саморегуляции организма, которая, в свою очередь, имеет приспособительное значение. Так при повышении температуры тела у млекопитающих расширяются кровеносные сосуды, отдавая в окружающую среду тепло в большем количестве. В результате температура животного нормализуется.

У высших животных многие реакции на внешние раздражители зависят от достаточно сложного поведения.

Источник



Организм

Организм (позднелат.  organismus от позднелат.  organizo  — устраиваю, сообщаю стройный вид, от др.-греч. ὄργανον  — орудие) — живое тело, обладающее совокупностью свойств, отличающих его от неживой материи.

Как отдельная особь организм входит в состав вида и популяции, являясь структурной единицей популяционно-видового уровня жизни.

Организмы — один из главных предметов изучения в биологии. Для удобства рассмотрения все организмы распределяются по разным группам и категориям, что составляет биологическую систему их классификации. Самое общее их деление — на ядерные и безъядерные. По числу составляющих организм клеток их делят на внесистематические категории одноклеточных и многоклеточных. Особое место между ними занимают колонии одноклеточных.

Формирование целостного многоклеточного организма — процесс, состоящий из дифференцировки структур (клеток, тканей, органов) и функций и их интеграции как в онтогенезе, так и в филогенезе. Многие организмы организованы во внутривидовые сообщества (например, семья или рабочий коллектив у людей).

Содержание

Одноклеточные и многоклеточные организмы

Кле́тка — основная единица жизни, реальный носитель её свойств, элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая всей совокупностью свойств живого, собственным механизмом обмена веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии. Все клеточные формы жизни на Земле можно разделить на два надцарства на основании строения составляющих их клеток:

    (доядерные) — более простые по строению и возникли в процессе эволюции раньше; (ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Однокле́точные органи́змы — внесистематическая категория живых организмов, тело которых состоит из одной (в отличие от многоклеточных) клетки (одноклеточность). К ней могут относиться как прокариоты, так и эукариоты. Считается, что одноклеточными были первые живые организмы Земли. Наиболее древними из них считаются бактерии и археи. Термин «одноклеточные» также иногда используется как синоним протист (лат.  Protozoa,Protista ).

Прокарио́ты, или до я́дерные преимущественно одноклеточны, за исключением некоторых цианобактерий и актиномицетов. Среди эукариот одноклеточное строение имеют простейшие, ряд грибов, некоторые водоросли. Одноклеточные могут формировать колонии.

Эукарио́ты, или я́дерные (лат.  Eucaryota от греч. εύ- — хорошо и κάρυον — ядро) — домен (надцарство) живых организмов, клетки которых содержат ядра. Все организмы, кроме бактерий и архей, являются ядерными (вирусы и вироиды также не являются эукариотами, но не все биологи считают их живыми организмами).

Животные, растения, грибы, а также группы организмов под общим названием протисты — являются эукариотическими организмами. Они могут быть одноклеточными и многоклеточными, но объединяет их общий план строения клеток. Считается, что все эти столь несхожие организмы имеют общее происхождение, поэтому группа ядерных рассматривается как монофилетический таксон наивысшего ранга. Согласно наиболее распространённым гипотезам, эукариоты появились 1,5—2 млрд лет назад. Важную роль в эволюции эукариот сыграл симбиогенез — симбиоз между эукариотической клеткой, видимо, уже имевшей ядро и способной к фагоцитозу, и проглоченными этой клеткой бактериями — предшественниками митохондрий и хлоропластов.

Многоклеточный организм — внесистематическая категория живых организмов, тело которых состоит из многих клеток, большая часть которых (кроме стволовых, например, клеток камбия у растений) дифференцированы, то есть различаются по строению и выполняемым функциям. Следует отличать многоклеточность и колониальность. У колониальных организмов отсутствуют настоящие дифференцированные клетки, а следовательно, и разделение тела на ткани. Граница между многоклеточностью и колониальностью нечёткая. Например, вольвокс часто относят к колониальным организмам, хотя в его «колониях» есть чёткое деление клеток на генеративные и соматические. Кроме дифференциации клеток, для многоклеточных характерен и более высокий уровень интеграции, чем для колониальных форм. Многоклеточные животные, возможно, появились на Земле 2,1 миллиарда лет назад [1] , вскоре после «кислородной революции» [2] .

Унитарные и модулярные организмы

Отличия от неживой природы

Живые организмы отличаются от тел неживой природы более сложным химическим составом (в частности, обязательным наличием белков и нуклеиновых кислот) и совокупностью свойств живого (по отдельности большинство из этих свойств имеются и у некоторых объектов неживой природы).

Источник

Организм и его свойство по природе

§ 32. Организм и его свойства

Оглянитесь вокруг себя, и вы увидите множество тел живой природы: животных, растения, грибы. Да и сам человек – тоже тело живой природы, часть ее.

Организм

Тела живой природы называют организмами. Следовательно, береза и птица, ромашка и гриб, слон и жук, рыба и змея, водоросль и человек – все это организмы. Они очень разнообразны по форме, окраске, размерам и многим другим признакам (рис. 78).

Рис. 78. Разнообразен мир живой природы. Его населяют организмы разных форм, окраски, размеров. Но их объединяет то, что все они – живые

Свойства живых организмов

Живые организмы обладают целым рядом свойств: они дышат, питаются, растут, дают потомство, умирают. Свойства живых организмов называют биологическими явлениями (в переводе с греческого «биос» означает жизнь). Следовательно, дыхание, питание, рост, размножение, старение и т. д. – биологические явления, характеризующие живые организмы (вспомните, что такое физические и химические явления). Этими свойствами живые организмы отличаются от тел неживой природы.

Живые организмы, в том числе и человек, в процессе дыхания используют кислород, который берут из окружающего воздуха, а выделяют углекислый газ. Кислород, как вы знаете, окисляет вещества, в результате чего образуются новые вещества и выделяется энергия, благодаря которой организм живет.

Все живые организмы питаются. В процессе питания поступают вещества, необходимые для роста, развития и жизнедеятельности организма.

Человек, например, питается разнообразной пищей. Это картофель, мясо, яблоки, молоко и др. В ее состав входят и органические, и неорганические вещества.

Так же, поглощая уже готовые органические вещества и небольшое количество неорганических, питаются животные. Они используют в пищу или растения, или других животных, или и то и другое вместе (рис. 79).

Рис. 79. И львы (хищники), и грифы (падальщики) используют в качестве пищи других животных

Иначе питаются растения. Они получают извне лишь неорганические вещества, а органические образуют сами, используя на этот процесс энергию света. Без света растение погибает, потому что не может питаться.

Но какими бы ни были продукты, в процессе пищеварения они перерабатываются. Возникают новые вещества, которые организм использует для построения своего тела в процессе роста и развития. Остатки переварившейся пищи и непереварившиеся вещества удаляются наружу.

В процессе жизни организмы растут. Рост – это увеличение массы. Разные организмы растут с неодинаковой скоростью: одни очень медленно, другие – быстро. Например, всего за семь лет из семечка эвкалипта может развиться дерево 19 м высотой и 1,5 м в обхвате. Но быстрее всех растут некоторые грибы – каждую минуту на 5 мм.

Живые организмы обладают удивительным свойством – дают потомство (рис. 80). У волков рождаются волчата, у кошки – котята, из икринок рыб выводятся мальки, которые растут и превращаются во взрослых рыб, из семян пшеницы вырастает взрослое растение пшеницы, а из семян подсолнечника – подсолнечник. Этот процесс называется размножением.

Рис. 80. Семейство волков

Размножениеэто свойство живых организмов производить потомство.

Итак, живые организмы обладают свойствами, каждое из которых незаменимо. Питание и дыхание, например, связывают живой организм с окружающей природой. Организм берет себе из среды обитания необходимые для жизни вещества, перерабатывает их, а ненужное выделяет наружу. Организм как бы обменивается с окружающей природой веществами, благодаря чему живет.

Все перечисленные свойства характеризуют только живые организмы. После смерти в организме полностью прекращаются все жизненные процессы.

1. Чем живое отличается от неживого?

2. Объясните опыт. В две высокие банки поместили по одной подопытной белой мыши, Одну банку плотно закрыли крышкой. Через некоторое время мышь в ней погибла, в то время как другая чувствовала себя прекрасно. Почему?

Источник

Adblock
detector