Немембранные органоиды строение и функции

Немембранные органоиды: строение и функции

Все клетки живых организмов состоят из плазматической мембраны, ядра и цитоплазмы. В последней находятся органоиды и включения.

Органоиды – это постоянные образования в клетке, каждое из которых исполняет определенные функции. Включения – это временные структуры, которые в основном состоят из гликогена у животных и крахмала у растений. Они выполняют запасную функцию. Включения могут находиться как в цитоплазме, так и в матриксе отдельных органоидов, таких как хлоропласты.

Классификация органоидов

В зависимости от строения, они делятся на две большие группы. В цитологии выделяют мембранные и немембранные органоиды. Первые можно разделить на две подгруппы: одномембранные и двумембранные.

К двумембранным органоидам причисляются митохондрии и пластиды (хлоропласты, хромопласты, лейкопласты). Они имеют самое сложное строение, и не только за счет наличия двух мембран. В их составе также могут присутствовать включения и даже целые органоиды и ДНК. Например, в матриксе митохондрий можно наблюдать рибосомы и митохондриальную ДНК (мтДНК).

К немембранным органоидам относятся рибосомы, клеточный центр (центриоль), микротрубочки и микрофиламенты.

Немембранные органоиды: функции

Рибосомы нужны для того, чтобы синтезировать белок. Они отвечают за процесс трансляции, то есть расшифровке информации, которая находится на иРНК, и формировании полипептидной цепочки из отдельных аминокислот.

Клеточный центр участвует в образовании веретена деления. Оно образуется как в процессе мейоза, так и митоза.

Такие немембранные органоиды, как микротрубочки, формируют цитоскелет. Он выполняет структурную и транспортную функции. По поверхности микротрубочек могут перемещаться как отдельные вещества, так и целые органоиды, например, митохондрии. Процесс транспортировки происходит с помощью специальных белков, которые называются моторными. Центром организации микротрубочек является центриоль.

Микрофиламенты могут участвовать в процессе изменения формы клетки, а также нужны для передвижения некоторых одноклеточных организмов, таких как амебы. Кроме того, из них могут образовываться разнообразные структуры, функции которых до конца не изучены.

Структура

Как понятно из названия, органоиды немембранного строения не имеют мембран. Они состоят из белков. Некоторые из них содержат также нуклеиновые кислоты.

Структура рибосом

Эти немембранные органоиды находятся на стенках эндоплазматического ретикулума. Рибосома обладает шаровидной формой, ее диаметр составляет 100-200 ангстрем. Эти немембранные органоиды состоят из двух частей (субъединиц) – малой и большой. Когда рибосома не функционирует, они находятся раздельно. Для того, чтобы они объединились, обязательно присутствие ионов магния или кальция в цитоплазме.

Иногда при синтезе больших молекул белка рибосомы могут объединяться в группы, которые называются полирибосомами или полисомами. Количество рибосом в них может колебаться от 4-5 до 70-80 в зависимости от размера молекулы белка, которая синтезируется ими.

Рибосомы состоят из белков и рРНК (рибосомной рибонуклеиновой кислоты), а также молекул воды и ионов металлов (магния или кальция).

Строение клеточного центра

У эукариот эти немембранные органоиды состоят из двух частей, называемых центросомами, и центросферы – более светлой области цитоплазмы, которая окружает центриоли. В отличии от случая с рибосомами, части этого органоида обычно объединены. Совокупность двух центросом называется диплосомой.

Каждая центросома состоит из микротрубочек, которые закручены в форме цилиндра.

Структура микрофиламентов и микротрубочек

Первые состоят из актина и других сократительных белков, таких как миозин, тропомиозин и др.

Микротрубочки представляют длинные цилиндры, пустые внутри, которые растут от центриоли к краям клетки. Их диаметр – 25 нм, а длина может быть от нескольких нанометров до нескольких миллиметров в зависимости от размеров и функций клетки. Эти немембранные органоиды состоят в первую очередь из белка тубулина.

Микротрубочки являются нестабильными органоидами, которые постоянно изменяются. У них наблюдается плюс-конец и минус-конец. Первый постоянно присоединяет к себе молекулы тубулина, а от второго они постоянно отщепляются.

Формирование немембранных органоидов

За образование рибосом отвечает ядрышко. В нем происходит формирование рибосомной РНК, структура которой кодируется рибосомной ДНК, находящейся на специальных участках хромосом. Белки, из которых состоят эти органоиды, синтезируются в цитоплазме. После этого они транспортируются в ядрышко, где и объединяются с рибосомной РНК, образуя малую и большую субъединицы. Затем уже готовые органоиды перемещаются в цитоплазму, а затем на стенки гранулярного эндоплазматического ретикулума.

Клеточный центр присутствует в клетке уже с момента ее образования. Он формируется при делении материнской клетки.

Заключение

В качестве вывода приведем краткую таблицу.

Органоид Локализация Функции Строение
Рибосома внешняя сторона мембран гранулярного эндоплазматического ретикулума; цитоплазма синтез белков (трансляция) две субъединицы, состоящие из рРНК и белков
Клеточный центр центральная область цитоплазмы клетки участие в процессе образования веретена деления, организация микротрубочек две центриоли, состоящие из микротрубочек, и центросфера
Микротрубочки цитоплазма поддержание формы клетки, транспорт веществ и некоторых органоидов длинные цилиндры из белков (прежде всего тубулина)
Микрофиламенты цитоплазма изменение формы клетки и др. белки (чаще всего актин, миозин)

Итак, теперь вы знаете все о немембранных органоидах, которые имеются как в растительных, так и в животных и грибных клетках.

Источник



Органоиды растительной клетки и их функции

04.03.2018
Органоиды растительной клетки

Клетки растений, как и клетки большинства живых организмов, состоят из клеточной оболочки, которая отмежевывает содержимое клетки (протопласт) от окружающей его среды. Клеточная оболочка включает в себя достаточно жесткую и прочную клеточную стенку (снаружи) и тонкую, эластичную цитоплазматическую мембрану (внутри). Наружный слой клеточной стенки, представляющий собой пористую целлюлозную оболочку с присутствующим в ней лигнином, состоит из пектинов. Такие составляющие определяют прочность и жесткость растительной клетки, обеспечивают её форму, способствуют лучшей защите внутриклеточного содержимого (протопласта) от неблагоприятных условий. Составляющие цитоплазматической мембраны – белки и липиды. Как клеточная стенка, так и мембрана обладают полупроницаемыми способностями и выполняют транспортную функцию, пропуская внутрь клетки воду и необходимые для жизнедеятельности элементы питания, а также регулируя обмен веществ между клетками и со средой.

Протопласт растительной клетки включает в себя внутреннюю полужидкую среду мелкозернистой структуры ( цитоплазму ), состоящую из воды, органических соединений и минеральных солей, в которой находятся ядро – главная часть клетки – и другие органоиды . Впервые описал жидкое содержимое клетки и назвал его протоплазмой (1825–1827 г.) чешский физиолог, микроскопист Ян Пуркине. Органоиды являются постоянными клеточными структурами, выполняющими специфические, предназначенные только им функции. Кроме того, они отличаются между собой строением и химическим составом. Различают немембранные органоиды (рибосомы, клеточный центр, микротрубочки, микрофиламенты), одномембранные (вакуоли, лизосомы, комплекс Гольджи, эндоплазматическая сеть) и двумембранные (пластиды, митохрондрии).

Органоиды

Вакуоль (одна или несколько) – важнейшая составляющая протопласта, характерная только для растительных клеток. В молодых клетках присутствуют, как правило, несколько небольших вакуолей, но по мере роста и старения клетки, мелкие вакуоли сливаются в одну большую (центральную) вакуоль. Она представляет собой ограниченный мембраной (тонопластом) резервуар с находящимся внутри него клеточным соком. Основной компонент клеточного сока – это вода (70–95%), в которой растворены органические и неорганические соединения: соли, сахара (фруктоза, глюкоза, сахароза), органические кислоты (щавелевая, яблочная, лимонная, уксусная и пр.), белки, аминокислоты. Все эти продукты являются промежуточным результатом метаболизма и временно накапливаются в вакуолях как запасные питательные вещества, чтобы в дальнейшем вторично участвовать в обменных процессах клетки. Также в клеточном соке присутствуют танины (дубильные вещества), фенолы, алкалоиды, антоцианы и различные пигменты, которые выводятся в вакуоль, изолируясь при этом от цитоплазмы. В вакуоли поступают и ненужные продукты жизнедеятельности клетки (отходы), например, щавелевокислый калий.

Вакуоль

Благодаря вакуолям клетка обеспечивается запасами воды и питательных веществ (белков, жиров, витаминов, минеральных солей), а также в ней поддерживается осмотическое внутриклеточное давление (тургор). В вакуолях происходит расщепление старых белков и органелл.

Вторая отличительная особенность растительной клетки – присутствие в ней двумембранных органоидов – пластид. Открытие этих органоидов, их описание и классификация (1880 – 1883 г.) принадлежат немецким ученым – естествоиспытателю А. Шимперу и ботанику А. Мейеру. Пластиды представляют собой вязкие белковые тельца и разделяются на три основных типа: лейкопласты, хромопласты и хлоропласты. Все они под влиянием действия определенных факторов среды способны переходить из одного вида в другой.

Пластиды

Среди всех типов пластид наиболее важную роль выполняют хлоропласты: в них осуществляется процесс фотосинтеза. Эти органоиды отличаются зеленой окраской, что связано с наличием в их составе значительного количества хлорофилла – зеленого пигмента, поглощающего энергию солнечного света и синтезирующего органические вещества из воды и углекислого газа. Хлоропласты отмежевываются от цитоплазмы клетки двумя мембранами (внешней и внутренней) и имеют линзообразную овальную форму (длина составляет около 5–10 мкм, а ширина колеблется от 2 до 4 мкм). Кроме хлорофилла в хлоропластах присутствуют каротиноиды (вспомогательные пигменты оранжевого цвета). Количество хлоропластов в растительной клетке может варьироваться от 1–2-х (простейшие водоросли) до 15–20 штук (клетка листка высших растений).

Мелкие бесцветные пластиды лейкопласты встречаются в клетках тех органов растения, которые скрыты от действия солнечного света (корни или корневища, клубни, луковицы, семена). Форма их очень разнообразна (шаровидные, эллипсоидные, чашевидные, гантелевидные). Они осуществляют синтез питательных веществ (главным образом, крахмала, реже – жиров и белков) из моно- и дисахаридов. Под воздействием солнечных лучей лейкопласты имеют свойство превращаться в хлоропласты.

Хромопласты образуются в результате накопления каротиноидов и содержат значительное количество пигментов желтого, оранжевого, красного, бурого цвета. Они присутствуют в клетках плодов и лепестков, определяя их яркую окраску. Хромопласты бывают дисковидные, серповидные, зубчатые, шарообразные, ромбовидные, треугольные и пр. Участвовать в процессе фотосинтеза они не могут по причине отсутствия в них хлорофилла.

Органоиды

Двумембранные органоиды митохондрии представлены небольшими (несколько микронов в длину) образованиями чаще цилиндрической, но также гранулоподобной, нитевидной или округлой формы. Впервые обнаружены с помощью специального окрашивания и описаны немецким биологом Р. Альтманом как биопласты (1890 г.). Название митохондрий им дал немецкий патолог К. Бенда (1897 г.). Наружная мембрана митохондрии состоит из липидов и вдвое меньшего количества белковых соединений, она имеет гладкую поверхность. В составе внутренней мембраны преобладают белковые комплексы, а количество липидов не превышает третьей части от них. Внутренняя мембрана имеет складчатую поверхность, она образует гребневидные складки (кристы), за счет которых поверхность ее значительно увеличивается. Пространство внутри митохондрии заполнено более плотным, чем цитоплазма вязким веществом белкового происхождения — матриксом. Митохондрии очень чувствительны к условиям окружающей среды, и под ее влиянием могут разрушаться или менять форму.

Митохондрия

Они выполняют очень сложную физиологическую роль в процессах обмена веществ клетки. Именно в митохондриях происходит ферментативное расщепление органических соединений (жирных кислот, углеводов, аминокислот), и, опять-таки под воздействием ферментов синтезируются молекулы аденозинтрифосфорной кислоты (АТФ), являющейся универсальным источником энергии для всех живых организмов. Митохондрии синтезируют энергию и являются, в сущности, «энергетической станцией» клетки. Количество этих органоидов в одной клетке непостоянно и колеблется в пределах от нескольких десятков до нескольких тысяч. Чем активнее жизнедеятельность клетки, тем большее количество митохондрий она содержит. В процессе деления клетки митохондрии также способны делиться путем образования перетяжки. Кроме того, они могут сливаться между собой, образуя одну митохондрию.

Гольджи

Аппарат Гольджи назван так по имени его первооткрывателя, итальянского ученого К. Гольджи (1897 г.). Органоид расположен вблизи ядра и представляет собой мембранную структуру, имеющую вид многоярусных плоских дисковидных полостей, расположенных одна над другой, от которых ответвляются многочисленные трубчатые образования, завершающиеся пузырьками. Основная функция аппарата Гольджи – это удаление из клетки продуктов ее жизнедеятельности. Аппарат имеет свойство накапливать внутри полостей секреторные вещества, включающие пектины, ксилозу, глюкозу, рибозу, галактозу. Система мелких пузырьков (везикул), расположенная на периферии этого органоида, выполняет внутриклеточную транспортную роль, перемещая синтезируемые внутри полостей полисахариды к периферии. Достигнув клеточной стенки или вакуоли, везикулы, разрушаясь, отдают им свое внутреннее содержимое. В аппарате Гольджи происходит также образование первичных лизосом.

Лизосомы

Лизосомы были открыты бельгийским биохимиком Кристианом де Дювом (1955 г.). Они представляют собой небольшие тельца, ограниченные одной защитной мембраной и являются одной из форм везикул. Содержат более 40 различных гидролитических ферментов (гликозидаз, протеиназ, фосфатаз, нуклеаз, липаз и пр.), расщепляющих белки, жиры, нуклеиновые кислоты, углеводы, в связи с чем участвуют в процессах разрушения отдельных органоидов или участков цитоплазмы. Лизосомы выполняют важную роль в защитных реакциях и внутриклеточном питании.

Рибосомы – это очень мелкие немембранные органоиды близкой к шаровидной или эллипсоидной формы. Формируются в ядре клетки. Из-за маленьких размеров они воспринимаются как «зернистость» цитоплазмы. Некоторая часть их находится в свободном состоянии во внутренней среде клетки (цитоплазме, ядре, митохондриях, пластидах), остальные же прикреплены к наружным поверхностям мембран эндоплазматической сети. Количество рибосом в растительной клетке относительно невелико и составляет в среднем около 30000 шт. Рибосомы располагаются поодиночке, но иногда могут образовывать и группы – полирибосомы (полисомы). Этот органоид состоит из двух различных по величине частей, которые могут существовать порознь, но в момент функционирования органоида объединяются в одну структуру. Основная функция рибосом – синтез молекул белка из аминокислот.

Рибосома

Цитоплазму растительной клетки пронизывает огромное множество ультрамикроскопических жгутов, разветвленных трубочек, пузырьков, каналов и полостей, ограниченных трехслойными мембранами и образующих систему, известную как эндоплазматическая сеть (ЭПС). Открытие этой системы принадлежит английскому ученому К. Портеру (1945 г.). ЭПС находится в контакте со всеми органоидами клетки и составляет вместе с ними единую внутриклеточную систему, осуществляющую обмен веществ и энергии, а также обеспечивающую внутриклеточный транспорт. Мембраны ЭПС с одной стороны связаны с наружной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.

Эндоплазматическая сеть

По своему строению ЭПС неоднородна, различают два её типа: гранулярную, на мембранах которой расположены рибосомы и агранулярную (гладкую) – без рибосом. В рибосомах гранулярной сети происходит синтез белка, который затем поступает внутрь каналов ЭПС, а на мембранах агранулярной сети синтезируются углеводы и липиды, также поступающие затем в каналы ЭПС. Таким образом, в каналах и полостях ЭПС происходит накопление продуктов биосинтеза, которые затем транспортируются к органоидам клетки. Кроме того, эндоплазматическая сеть разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым отдельную среду для различных реакций.

Ядро представляет собой самый крупный клеточный органоид, ограниченный от цитоплазмы чрезвычайно тонкой и эластичной двумембранной ядерной оболочкой и является наиважнейшей частью живой клетки. Открытие ядра растительной клетки принадлежит шотландскому ботанику Р. Брауну (1831 г.). В молодых клетках ядро размещено ближе к центру, в старых — смещается к периферии, что связано с образованием одной большой вакуоли, занимающей значительную часть протопласта. Как правило, в растительных клетках имеется лишь одно ядро, хотя случаются двухъядерные и многоядерные клетки. Химический состав ядра представлен белками и нуклеиновыми кислотами.

Клетка растения

Ядро содержит значительное количество ДНК (дезоксирибонуклеиновой кислоты), выполняющей роль носителя наследственных свойств. Именно в ядре (в хромосомах) хранится и воспроизводится вся наследственная информация, которая определяет индивидуальность, особенности, функции, признаки клетки и всего организма в целом. Кроме того, одним из наиболее важных предназначений ядра является управление обменом веществ и большинством процессов, происходящих в клетке. Информация, поступающая из ядра, определяет физиологическое и биохимическое развитие растительной клетки.

Внутри ядра находятся от одного до трех немембранных мелких телец округлой формы – ядрышек, погруженных в бесцветную, однородную, гелеобразную массу – ядерный сок (кариоплазму). Ядрышки состоят, главным образом, из белка; 5% их содержания составляет РНК (рибонуклеиновая кислота). Основная функция ядрышек – синтез РНК и формирование рибосом.

Источник

Немембранные органоиды клетки

В числе клеточных органоидов (органелл) — специальных постоянных структур, выполняющих важнейшие функции, — есть немембранные органоиды, то есть не имеющие в своем строении мембран. Рассмотрим их подробно.

Опорно-двигательная система клетки

Сложный цитоскелет является опорно-двигательной системой клетки. Его составляют микрофиламенты, реснички и жгутики с базальными тельцами, клеточный центр, включающий микротрубочки и центриоли. Цитоскелет задает форму клетки, ее движение, деление и внутриклеточные перемещения.

1. Микрофиламенты, представляющие собой нити диаметром до 6 нм, состоят из актина и реже миозина. В присутствии АТФ они соединяются в длинные цепочки, могут изменять длину относительно друг друга, обеспечивая движение. Расположены микрофиламенты под клеточной мембраной, нередко присоединены к ее белкам (эритроциты), обеспечивая гибкость клеток.

2. Микроворсинки являются пучками микрофиламентов из актина, объединенных выростом цитоплазмы и покрытых плазматической мембраной.

3. Микротрубочки — тонкие нити из белка тубулина. Ориентируют перемещение органоидов в клетке, влияют на клеточную геометрию.

4. Реснички и жгутики имеют внутри стержень (аксонему), состоящий из особым образом организованных пучков микротрубочек. «Система 9+2» сообщает о том, в каком количестве микротрубочки находятся внутри жгутика и реснички: 9 дуплетов по периферии, 2 одиночные в центре. Реснички присутствуют в клетках яйцеводов, в носовой полости, в эпителии бронхов — синхронными движениями они продвигают мокроту по бронхам «к выходу», а яйцеклетку в сторону матки. Жгутики длиннее ресничек более чем в 10 раз, например, у сперматозоидов они достигают 100 мкм.

5. Базальные тельца являются как бы якорями для жгутиков и ресничек, укрепляя их в цитоплазме. Внутри базального тельца, на его периферии, находится «система 9» — совокупность триплетов, в самом же центре микротрубочек нет. Как это запомнить? Базальное тельце — важный центр, который держит реснички и жгутики, поэтому в нем «большие» триплеты, а не «маленькие» дуплеты. В центре ничего нет, так как на периферии добавлено по 1 трубочке, они как бы переместились, оставив пустоту.

6. Клеточный центр (центросома) представлен центриолями и микротрубочками, отходящими от них.

7. Центриоли расположены попарно, перпендикулярно друг другу. В них наблюдается тот же принцип строения, что и в базальных тельцах, — 9 триплетов. У высших растений центриолей нет. Делятся ли центриоли? Да, они делятся перед делением клетки (две центриоле превращаются в четыре). После удвоения центриолей из микротрубочек формируется веретено деления.

1. Представляют собой шарообразные структуры диаметром около 20 нм — то есть крайне мелкие!

2. В составе имеют рибосомные белки, молекулы рРНК.

3. Конструкция рибосомы сложная, молекулы в ее составе не повторяются дважды и занимают определенные места. При этом молекул более 50.

4. Имеют две субчастицы — большую и малую. У кишечной палочки (е. coli) две субчастицы названы 50S и 30S. В клетке эукариот рибосомы имеют субчастицы 60S и 40S — они содержат больше разных белков.

5. Субчастица 30S построена из 21 рибосомного белка и одной молекулы 16S рибосомной РНК. Субчастица 50S — из 34 молекул белка и двух молекул рибосомной РНК (23S и 5S).

6. Что такое S — коэффициент седиментации (к. с.)? Это скорость осаждения частицы в центрифуге, исчисляемая в единицах Сведберга. Зависит коэффициент седиментации от молекулярной массы и пространственной конформации частицы.

7. В чем особенности рибосом митохондрий и пластид? В них рибосомы больше похожи на 70S (бактериальные), чем на 80S (имеющиеся в цитоплазме эукариот).


Клеточные включения

В основном клеточные включения — это продукты клеточного метаболизма в цитоплазме. Они могут быть в виде гранул, капель и кристаллов.

1. Жиры. В виде капель — в цитоплазме ряда простейших, например, инфузорий, в клетках растений, в семенах. Жир накапливается при болезнях, например, жировом перерождении печени. У млекопитающих жир содержится в жировых клетках.

2. Полисахариды. Часто имеют вид капель. Прежде всего, гликоген запасается у животных (мышечные волокна, печень, нейроны). Растения (клубни картофеля, зерна злаков) накапливают гранулы крахмала, в которых много слоев, каждый из них имеет кристаллы.

3. Белки. Имеют вид гранул. Встречаются реже, чем другие включения (яйцеклетки, клетки печени, простейших).

4. Пигменты — например, родопсин в сетчатке глаза, черный пигмент меланин в коже животных, гемоглобин эритроцитов.

Источник

Немембранные органоиды клетки

В числе клеточных органоидов (органелл) — специальных постоянных структур, выполняющих важнейшие функции, — есть немембранные органоиды, то есть не имеющие в своем строении мембран. Рассмотрим их подробно.

Опорно-двигательная система клетки

Сложный цитоскелет является опорно-двигательной системой клетки. Его составляют микрофиламенты, реснички и жгутики с базальными тельцами, клеточный центр, включающий микротрубочки и центриоли. Цитоскелет задает форму клетки, ее движение, деление и внутриклеточные перемещения.

1. Микрофиламенты, представляющие собой нити диаметром до 6 нм, состоят из актина и реже миозина. В присутствии АТФ они соединяются в длинные цепочки, могут изменять длину относительно друг друга, обеспечивая движение. Расположены микрофиламенты под клеточной мембраной, нередко присоединены к ее белкам (эритроциты), обеспечивая гибкость клеток.

2. Микроворсинки являются пучками микрофиламентов из актина, объединенных выростом цитоплазмы и покрытых плазматической мембраной.

3. Микротрубочки — тонкие нити из белка тубулина. Ориентируют перемещение органоидов в клетке, влияют на клеточную геометрию.

4. Реснички и жгутики имеют внутри стержень (аксонему), состоящий из особым образом организованных пучков микротрубочек. «Система 9+2» сообщает о том, в каком количестве микротрубочки находятся внутри жгутика и реснички: 9 дуплетов по периферии, 2 одиночные в центре. Реснички присутствуют в клетках яйцеводов, в носовой полости, в эпителии бронхов — синхронными движениями они продвигают мокроту по бронхам «к выходу», а яйцеклетку в сторону матки. Жгутики длиннее ресничек более чем в 10 раз, например, у сперматозоидов они достигают 100 мкм.

5. Базальные тельца являются как бы якорями для жгутиков и ресничек, укрепляя их в цитоплазме. Внутри базального тельца, на его периферии, находится «система 9» — совокупность триплетов, в самом же центре микротрубочек нет. Как это запомнить? Базальное тельце — важный центр, который держит реснички и жгутики, поэтому в нем «большие» триплеты, а не «маленькие» дуплеты. В центре ничего нет, так как на периферии добавлено по 1 трубочке, они как бы переместились, оставив пустоту.

6. Клеточный центр (центросома) представлен центриолями и микротрубочками, отходящими от них.

7. Центриоли расположены попарно, перпендикулярно друг другу. В них наблюдается тот же принцип строения, что и в базальных тельцах, — 9 триплетов. У высших растений центриолей нет. Делятся ли центриоли? Да, они делятся перед делением клетки (две центриоле превращаются в четыре). После удвоения центриолей из микротрубочек формируется веретено деления.

1. Представляют собой шарообразные структуры диаметром около 20 нм — то есть крайне мелкие!

2. В составе имеют рибосомные белки, молекулы рРНК.

3. Конструкция рибосомы сложная, молекулы в ее составе не повторяются дважды и занимают определенные места. При этом молекул более 50.

4. Имеют две субчастицы — большую и малую. У кишечной палочки (е. coli) две субчастицы названы 50S и 30S. В клетке эукариот рибосомы имеют субчастицы 60S и 40S — они содержат больше разных белков.

5. Субчастица 30S построена из 21 рибосомного белка и одной молекулы 16S рибосомной РНК. Субчастица 50S — из 34 молекул белка и двух молекул рибосомной РНК (23S и 5S).

6. Что такое S — коэффициент седиментации (к. с.)? Это скорость осаждения частицы в центрифуге, исчисляемая в единицах Сведберга. Зависит коэффициент седиментации от молекулярной массы и пространственной конформации частицы.

7. В чем особенности рибосом митохондрий и пластид? В них рибосомы больше похожи на 70S (бактериальные), чем на 80S (имеющиеся в цитоплазме эукариот).


Клеточные включения

В основном клеточные включения — это продукты клеточного метаболизма в цитоплазме. Они могут быть в виде гранул, капель и кристаллов.

1. Жиры. В виде капель — в цитоплазме ряда простейших, например, инфузорий, в клетках растений, в семенах. Жир накапливается при болезнях, например, жировом перерождении печени. У млекопитающих жир содержится в жировых клетках.

2. Полисахариды. Часто имеют вид капель. Прежде всего, гликоген запасается у животных (мышечные волокна, печень, нейроны). Растения (клубни картофеля, зерна злаков) накапливают гранулы крахмала, в которых много слоев, каждый из них имеет кристаллы.

3. Белки. Имеют вид гранул. Встречаются реже, чем другие включения (яйцеклетки, клетки печени, простейших).

4. Пигменты — например, родопсин в сетчатке глаза, черный пигмент меланин в коже животных, гемоглобин эритроцитов.

Источник

Adblock
detector