Микроклонирование и размножение растений

Клонирование растений — современный подход к вегетативному размножению

клонирование растений

размножение растений

К одному из направлений биотехнологии относится клонирование растений и животных. Полученные искусственным путем при делении клеток клоны полностью идентичны исходному организму. В отношении растений клонирование – это способ вегетативного размножения, которым давно пользуются садоводы.

Что такое клонирование

процесс клонирования пшеницы

Создание организмов с одинаковым генетическим набором – это и есть клонирование. В растительном мире оно не представляет особой сложности, так как клетки продолжают деление в ходе роста и дифференцировки на ткани. Для элементарной единицы всего живого характерно свойство тотипотентности – способность дать начало любой клетке.

В ядре заложена генетическая информация, в которой полностью собраны все данные о конкретном растении. Это дает возможность из небольшого ростка или клетки воспроизвести организм, который является клоном — точной копией исходного растения.

схема получения трансгена

Клонирование в природе происходит на протяжении миллиардов лет. В этом случае растения размножаются бесполым путем (вегетативно). Земляника укореняется с помощью усов. Этот же способ используют лапчатка гусиная и лютик ползучий.

Черника образует новые кустики за счет боковых побегов. Из водных растений прекрасно клонирует себе подобных стрелолист обыкновенный, горизонтальные побеги которого распространяются по дну водоема. На прибрежных отмелях растет водокрас, образующий усы для продолжения рода.

Молодой побег, попадая в благоприятные условия, способен укорениться и дать начало новому растению. Для некоторых представителей фауны это наиболее оптимальный способ размножения, который помогает быстро расселиться, сохранить свой ареал и занять новые местообитания.

Многие виды растений занесены в Красную книгу:о и находятся на грани исчезновения. Восстановить растительный мир способен метод клонирования.

Получать клоны от редких растений и высаживать их в благоприятные природные условия – это один из вариантов увеличения их численности, шанс сохранить некоторые виды.

Плюсы и минусы получения клонов

успешное клонирование

Садоводы давно занимаются клонированием растений, поскольку этот метод обладает целым рядом преимуществ:

клонирование овощей в промышленных масштабах

  1. Клон является точной копией материнского растения, поэтому его основные черты и этапы развития предсказуемы.
  2. Гровер обладает полной характеристикой экземпляров, полученных от исходной формы: генетика необходимого вида (сорта) сохраняется полностью.
  3. Одно материнское растение способно за короткий промежуток времени «произвести на свет» множество идентичных ей проростков, что дает возможность последующих массовых посадок.
  4. Клонировать сорт удобнее зимой, а весной высаживать в грунт жизнеспособные экземпляры, которые быстро набирают зеленую массу, становятся взрослым растением.
  5. Отбираются экземпляры с высокими качественными характеристиками, которые впоследствии приносят отменный урожай, обладают высокой декоративностью или другими, не менее ценными качествами.

Из недостатков следует отметить:

  1. Сохранение генетической информации. В природе происходят перестройки в хромосомном наборе, что в ряде случаев полезно растению. Оно приобретает выносливость, устойчивость к некоторым болезням, способность жить в изменившихся климатических условиях и другие черты. При клонировании генетические перестройки встречаются редко.
  2. Выращенные в лабораторной практически стерильной среде, клоны плохо адаптируются в природе. Поселяясь «под открытым небом», они не способны заботиться о себе. Искусственно созданные экземпляры часто болеют: их атакуют вредители, болезни, они плохо переносят климатические изменения.

Для клонирования используются клетки апикальной меристемы (верхушки побегов или кончики корешков), которые способны к быстрому делению.

Сбалансированная по всем компонентам питательная среда поможет создать полноценное питание для растений. При нарушении гормонального баланса прекращается дифференциация клеток и происходит рост бесформенной клеточной массы или каллуса.

Поэтапное клонирование растений

поэтапное клонирование растений

При клонировании растений в домашних условиях используют необходимое количество черенков выбранных сортов. Используют здоровое и продуктивное растение, чтобы получить высокую урожайность или декоративность сорта. Выращивают в зимний период для последующего высаживания в грунт саженцев с заданными качествами.

1 этап

использование здоровых черенков

На начальном этапе клонирования действуем следующим образом:

  • используем здоровые черенки без признаков заболеваний;
  • молодой стебель длиной 10-20 см срезаем острым, чистым ножом;
  • срез проводим под углом в 45 градусов;
  • расположение стебля – место ответвления черенка от побега;
  • нижние листья убираем, чтобы усилить рост корневой системы;
  • накануне высадки срез обновляем;
  • саженцы ставим в воду со сбалансированным рН=5,8-6,2.

Корни в обычной воде прорастают медленно: потребуется 1-2 недели, чтобы увидеть начало образования молодых корешков. Ускорить процесс помогут стимуляторы корнеобразования, а для этого черенки помещают в питательный раствор.

установка для клонирования

Рассмотрим, как происходит клонирование с применением регуляторов корнеобразования. Биохимиками создано значительное количество различных стимуляторов. Как пример: препарат растительного происхождения Bio Roots, который усиливает рост и укрепляет корни, что помогает растению быстрее сформироваться.

пошаговые действия с использованием геля

Другой вариант стимулятора – это гель. Подходит гель гель Bioclone B.A.C., а также варианты отечественных производителей — Hesi ClonFix и Maxiclon. В них на несколько часов опускают место среза, чтобы гель попал во внутреннюю часть стебля. Затем черенок переносят в субстрат, которым служит кокосовое волокно или минеральная вата. Это стерильная среда, в которой идет процесс корнеобразования. Она способна удерживать влагу, питая корни.

Обратите особое внимание на выбор корнеобразующего средства. В его состав входят витамины, гормоны, другие важные для роста компоненты.

От выбора зависит дальнейший рост растения или его гибель. Обратитесь к специалисту, который подскажет наиболее оптимальный вариант для конкретной растительной культуры.

2 этап

использование гидропонной системы

Укоренившиеся черенки помещают в гидропонную систему. Один из вариантов – аэропонная система-пропагатор X-Stream 40. Гидропонная система любого типа не относится к «дешевым удовольствиям», но ее правильное использование окупается довольно быстро. Гровер будет получать значительное количество высококлассных саженцев для продажи или своих потребностей.

Клоны размещают в камере увлажнения со специальными выемками. Корневая система постоянно орошается питательным раствором. Температура и влажность устанавливается разово, а затем ее нужно просто контролировать.

маленькая гидропонная система

Когда корни сформированы, важно создать оптимальный баланс питательных веществ, чтобы черенок превратился в крепкое, молодое растение. Достаточное количество тепла и света довершат процесс.

При клонировании растений создаются следующие условия:

  1. Освещение на протяжении суток. Подойдут энергосберегающие или флюоресцентные лампы, обладающие широким спектральным диапазоном. Чтобы контролировать время освещения применяют таймеры для ламп.
  2. Уровень увлажненности – в пределах 80%.
  3. Средний температурный диапазон составляет +22-+25 °С, но он может меняться, исходя из конкретного вида растения. Тепловой режим необходимо постоянно контролировать.

Даже при правильном уходе надеятся на 100% результат бессмысленно, поэтому изначально нужно использовать значительное количество растительного материала.

Полезно установить рядом с клонами панели белого цвета. Процесс клонирования ускоряется, так как белая поверхность отражает широкий спектр цвета, необходимого для фотосинтеза и укоренения.

Клонированные деревья

рост саженца в пробирке

Получение «лесов в пробирках» — важная задача, которая не отностися к разряду легких. Чтобы сохранить лесной генофонд и приумножить его, биотехнологи создают лаборатории по выращиваю деревьев-клонов.

Например, в Институте Леса НАН, в лаборатории генетики и биотехнологии выращивают клоновые леса и рощи. Их цель – изучить необходимые условия, чтобы ускорить процесс восстановления лесов, ведь для получение дерева и травянистого растения требуется разный временной промежуток.

Примеры клонирования – на лабораторных полках. В пробирках, in vitro, находятся разного возраста хвойные и широколиственные лесные саженцы.

Элитный побег разделяют на множество частей и выращивается на питательной среде в оптимальных условиях:

  • влажность – 50%;
  • температура – 23 °С;
  • интенсивность освещения – 5000 люкс.

Сформированные саженцы попадают на плантации, где происходит их акклиматизация. Такие работы проводятся в промышленных масштабах. В специально оборудованных, огромных боксах массово выращивают саженцы лиственных и древесных пород, которые дают начало большому количеству древесных пород.

Просчитан экономический эффект при клонировании лесов. Это не только лесные массивы, дающие кислород. Осины и березы используют в качестве топлива, а ясень, дуб и липа пригодятся в мебельной и строительной отрасли.

Клонирование дает шанс на укоренение и получение саженцев редких, экзотических растений. Это возможность сохранение растительного генофонда планеты. Использование в частных хозяйствах дает возможность использовать новые, продуктивные сорта, которые сложно или долго размножаются другими способами. Решив использовать метод клонирования, необходимо взвесить все плюсы и минусы процесса, досконально изучить его и только затем приступать к делу.

Источник

Клональное микроразмножение растений

В природе существует два способа размножения растений: половой (семенной) и вегетативный. Эти способы имеют свои преимущества и недостатки. К недостаткам семенного размножения следует отнести генетическую пестроту получаемого посадочного материала и длительность ювенильного периода. При вегетативном размножении сохраняется генотип материнского растения и сокращается продолжительность ювенильного периода. Однако для большинства видов (в первую очередь для древесных пород) проблема вегетативного размножения остается до конца не решенной.

Это обусловлено следующими причинами:
1) не все породы, даже на ювенильной стадии, могут размножаться вегетативным способом с требуемой эффективностью (дуб, сосна, ель, орехоплодные и др.);

2) практически невозможно с помощью черенкования размножать многие виды древесных пород в возрасте старше 10-15 лет;

3) не всегда удается получать стандартный посадочный материал (существует возможность накопления и передачи инфекции);

4) операции при размножении взрослых (древесных) растений с помощью прививок отличаются трудоемкостью и сложностью;

5) разработанные технологии не эффективны для получения достаточного количества генетически однородного материала в течение года.

Достижения в области культуры клеток и тканей привели к созданию принципиально нового метода вегетативного размножения — клонального микроразмножения (получение в условиях in vitro (в пробирке) неполовым путем растений, генетически идентичных исходному экземпляру). В основе метода лежит уникальная способность растительной клетки реализовывать присущую ей тотипотентность, т.е. под влиянием экзогенных воздействий давать начало целому растительному организму.

Для обозначения растений, полученных бесполым размножением, в 1903 г. Уэббер из Министерства сельского хозяйства США ввел термин клон от греч. clon — черенок (побег), пригодный для размножения.

Клон — популяция клеток, возникших из одной клетки посредством митоза, или группа растений, развившихся вегетативным или бесполым путем, все члены которой произошли из одной повторно культивируемой клетки.
Клональное микроразмножение — получение in vitro неполовым путем растений, генетически идентичных исходному.

Этапы и методы клонального микроразмножения растений

Процесс клонального микроразмножения можно разделить на четыре этапа: 1 — выбор растения-донора (донор — растение, часть которого вводится в культуру), изолирование эксплантов (эксплант — ткань, взятая из своего оригинального места и перенесенная в искусственную среду для роста и поддержания жизнедеятельности) и получение хорошо растущей стерильной культуры; 2 — собственно микроразмножение, когда достигается получение максимального количества мериклонов (микропобегов); 3 — укоренение размноженных побегов с последующей адаптацией их к почвенным условиям, а при необходимости депонирование растений-регенерантов при пониженной температуре (2-10 С); 4 — выращивание растений в условиях теплицы и подготовка их к реализации или посадке в поле (рис. 4.1).


Рис. 4.1. Схема клонального микроразмножения растений: I путь -активация развития существующих меристем; II путь — индукция возникновения адвентивных почек; 1 — выбор исходного экспланта; 2 — получение стерильной культуры; 3 — образование адвентивных почек на первичном экспланте; 4 — рост почек и формирование микропобегов; 5 — размножение микропобегов; 6 — укоренение микропобегов; 7 — депонирование растений-регенерантов; 8 — акклиматизация растений к грунту; 9 — высадка регенерантов в поле

Существует много методов клонального микроразмножения. Различные авторы, проводя индивидуальные исследования по влиянию условий культивирования эксплантов на процессы морфогенеза, наблюдали разные ответные морфогенетические реакции на изменение условий выращивания, что, в свою очередь, способствовало созданию новых классификаций методов клонального микроразмножения.

В литературе предложены следующие методы микроразмножения растений: активация развития уже существующих в растении меристем (апекс стебля, пазушные и спящие почки стебля); индукция возникновения адвентивных почек непосредственно тканями экспланта; индукция соматического эмбриогенеза; дифференциация адвентивных почек в первичной и пересадочной каллусной ткани.

Первый метод, используемый при клональном микроразмножении растений, — это активация развития уже существующих в растении меристем, основывающийся на снятии апикального доминирования. Это может быть достигнуто двумя путями:

1. Удаление верхушечной меристемы стебля (снятие апикального доминирования) и последующее микрочеренкование побега in vitro на безгормональной среде. Апикальное доминирование — подавление роста боковых почек растительного побега или наличие терминальной почки.

2. Добавление в питательную среду веществ цитокининового типа действия, индуцирующих развитие многочисленных пазушных побегов. Как правило, в качестве цитокининов используют 6-бензиламинопурин (БАП) или 6-фурфуриламинопурин (кинетин), а также 2-изопентениладенин (2-iр) и зеатин. Полученные таким образом побеги отделяют от первичного материнского экспланта (инокулюм (трансплант) — часть суспензионной или каллусной культуры, переносимой в свежую питательную среду) и вновь самостоятельно культивируют на свежеприготовленной питательной среде, стимулирующей пролиферацию пазушных меристем и возникновение побегов более высоких порядков (рис. 4.2).


Рис. 4.2. Активация развития уже существующих в растении меристем, основывающаяся на снятии апикального доминирования: 1 -снятие апикального доминирования и последующее микрочеренкование побега in vitro на безгормоналыюй среде; 2 — индуцированное развитие многочисленных пазушных побегов под действием веществ цитокининового типа действия

В настоящее время этот метод широко используется в производстве безвирусного посадочного материала сельскохозяйственных культур, таких как технические (сахарная свекла, хмель, табак, топинамбур, стахис) и овощные (томаты, картофель, огурец, перец, тыква, спаржа и др.), а также для размножения культур промышленного цветоводства (гвоздика, хризантема, роза, гербера), тропических и субтропических растений (рододендрон, азалия, камелия, чай и др.), плодовых и ягодных культур (яблоня, слива, вишня, груша, виноград, малина, смородина, крыжовник и др.) и древесных растений (тополь, ива, ольха, береза, рябина, секвойя, туя, можжевельник и др.).

Для некоторых сельскохозяйственных культур, таких как картофель, технология клонального микроразмножения поставлена на промышленную основу (рис. 4.3). Применение метода активации развития существующих в растении меристем позволяет получать из одной меристемы картофеля более 105 растений в год, причем технология предусматривает получение в пробирках микроклубней — ценного безвирусного семенного материала.
Формирование растения капусты из пазушной почки показано на рис 4.4.

Источник



Раздел «Культуры растительных клеток»

Микроклональное размножение и оздоровление растений

Методы микроклонального размножения

Методы клонального микроразмножения

Существует много методов клонального микроразмножения, а также различных их классификаций. Согласно одной из них, предложенной Мурасиге в 1977 году, процесс можно осуществлять следующими путями:

1. Активация пазушных меристем.

2. Образование адвентивных побегов тканями экспланта.

3. Возникновение адвентивных побегов в каллусе.

4. Индукция соматического эмбриогенеза в клетках экспланта.

5. Соматический эмбриогенез в каллусной ткани.

6. Формирование придаточных эмбриоидов в ткани первичных соматических зародышей (деление первичных эмбриоидов).

Н. В. Катаева и Р. Г. Бутенко (1983) выделяют два принципиально различных типа клонального микроразмножения:

1. Активация уже существующих в растении меристем (апекс стебля, пазушные и спящие почки стебля).

2. Индукция возникновения почек или эмбриоидов de novo :

а) образование адвентивных побегов непосредственно тканями экспланта;

б) индукция соматического эмбриогенеза;

в) дифференциация адвентивных почек в первичной и пересадочной каллусной ткани.

Основной метод, использующийся при клональном микроразмножении растений — активация развития уже существующих в растении меристем. Он основан на снятии апикального доминирования (рис. 18).

Этого можно достичь двумя путями: а) удалением верхушечной меристемы стебля и последующим микрочеренкованием побега in vitro на безгормональной среде; б) добавлением в питательную среду веществ цитокининового типа действия, индуцирующих развитие многочисленных пазушных побегов. Как правило, в качестве цитокининов используют 6-бензиламинопурин (БАП) или 6-фурфуриламинопурин (кинетин) и зеатин.

Рис. 18. Схема размножения растений методом активации уже существующих меристем (по А. Р. Родину, Е. А. Калашниковой, 1993): 1 – путем удаления верхушечной меристемы: 2 – добавлением цитокининов в среду (б/г – среда без гормонов, Ц – цитокинин, А – ауксин)

Полученные таким образом побеги отделяют от первичного экспланта и вновь самостоятельно культивируют на свежеприготовленной питательной среде, стимулирующей пролиферацию пазушных меристем и возникновение побегов более высоких порядков.

Часто в качестве экспланта используют верхушечные или пазушные почки, которые изолируют из побега и помещают на питательную среду с цитокининами. Образующиеся пучки побегов делят, при необходимости черенкуют и переносят на свежую питательную среду. После нескольких пассажей, добавляя в питательную среду ауксины, побеги укореняют in vitro (рис. 19), а затем переносят в почву, где создают условия, способствующие адаптации растений (рис. 20).

микроклональное размножение - укоренение в пробирке

Рис. 19. Образование корней побегами розы при добавлении в питательную среду 2 мг/л 2,4-Д

4-й этап микроклонального размножения - адаптация пробирочных растений к почвенным условиям

Рис. 20. Адаптация пробирочных роз к почвенным условиям микроклональное размножение гвоздики

В настоящее время этот метод широко используется в производстве посадочного материала сельскохозяйственных культур, как технических, так и овощных, а также для размножения культур промышленного цветоводства (например, гвоздики, рис. 21), тропических и субтропических растений, плодовых и ягодных культур, древесных растений. Для некоторых культур, таких как картофель, технология клонального размножения поставлена на промышленную основу. Применение метода активации развития существующих меристем позволяет получать из одной меристемы картофеля более 100000 растений в год, причем технология предусматривает получение в пробирках микроклубней — ценного безвирусного семенного материала.

Рис. 21. Пробирочная гвоздика

Второй метод — индукция возникновения адвентивных почек непосредственно тканями экспланта. Он основан на способности изолированных частей растения при благоприятных условиях питательной среды восстанавливать недостающие органы и таким образом регенерировать целые растения. Можно добиться образования адвентивных почек почти из любых органов и тканей растения (изолированного зародыша, листа, стебля, семядолей, чешуек и донца луковиц, сегментов корней и зачатков соцветий). Этот процесс происходит на питательных средах, содержащих цитокинины в соотношении с ауксинами 10:1 или 100:1. В качестве ауксина используют ИУК или НУК. Таким способом были размножены многие представители семейства лилейных, томаты, древесные растения (из зрелых и незрелых зародышей).

Достаточно хорошо разработана технология клонального размножения земляники, основанная на культивировании апикальных меристем. Меристематические верхушки изолируют из молодых, свободных от вирусных болезней растений, и выращивают на питательной среде МС, содержащей БАП в концентрации 0,1 — 0,5 мг/л. Через 3 — 4 недели культивирования меристема развивается в проросток, в основании которого формируются адвентивные почки, быстро растущие и дающие начало новым почкам. В течение 6-8 недель образуется конгломерат почек, связанных между собой соединительной тканью и находящихся на разной стадии развития. Появляются листья на коротких черешках, в нижней части которых формируются новые адвентивные почки. Эти почки разделяют и пересаживают на свежую питательную среду. На среде без регуляторов роста за 4 — 5 недель формируются нормальные растения с корнями и листьями. От одного материнского растения таким образом можно получить несколько миллионов растений-регенерантов в год.

Третий метод, практикуемый при клональном микроразмножении, основывается на дифференциации из соматических клеток зародышеподобных структур, которые по своему виду напоминают зиготические зародыши (рис. 22). Этот метод получил название соматического эмбриогенеза. В отличие от развития in vivo, соматические зародыши развиваются асексуально вне зародышевого мешка и по своему внешнему виду напоминают биполярные структуры, у которых одновременно наблюдается развитие апикальных меристем стебля и корня. Согласно Стеварду, соматические зародыши проходят 3 стадии развития: глобулярную, сердцевидную, торпедовидную и в конечном итоге имеют тенденцию развития в проросток. На рисунке 3 показан конечный результат развития – растение пшеницы.

Рис. 22. Соматический эмбриогенез в каллусной ткани

Наиболее впечатляющим применением метода соматического эмбриогенеза стало размножение гвинейской масличной пальмы (Elaeis guineensis), масло которой широко используется при производстве маргарина и пищевого масла. Масличная пальма в природе не образует побегов и боковых ростков, что затрудняет ее вегетативное размножение. Культивирование черенков in vitro также невозможно. Было решено получить скопления клеток недифференцированной ткани (каллусы) путем дедифференцировки специфических тканей, а затем культивировать их до регенерации целых проростков. В первой культуральной среде каллусы из фрагментов листьев развивались в течение 90 дней, при переносе во вторую и третью культуральные среды превращались в "эмбриоиды". Эмбриоиды размножались самопроизвольно, в течение месяца число эмбриоидов возрастало втрое, а за год из 10 эмбрионов можно было получить потомство численностью 500000 растений.

Формирование эмбриоидов в культуре тканей осуществляется в несколько этапов. Сначала происходит дифференциация клеток под влиянием ауксинов, добавленных в питательную среду (2,4-Д) и превращение их в эмбриональные. Получить эмбриоиды из этих клеток можно уменьшая концентрацию ауксинов или исключая их из питательной среды. Соматические зародыши представляют собой полностью сформированные зародыши, из которых путем соответствующего капсулирования можно получить искусственные семена.

Четвертый метод клонального микроразмножения — дифференциация адвентивных почек в первичной и пересадочной каллусной ткани (рис. 23).

Рис. 23. Дифференциация придаточных почек в каллусной ткани

Практически он мало используется с целью получения посадочного материала in vitro. Это связано с тем, что при частом пассировании каллусной ткани может изменяться плоидность регенерируемых растений, наблюдаются структурные перестройки хромосом и накопление генных мутаций. Наряду с генетическими изменениями отмечаются и морфологические: низкорослость, неправильное жилкование листьев, образование укороченных междоузлий, пониженная устойчивость к болезням и вредителям. В то же время, некоторые недостатки этого метода в селекционной работе оборачиваются преимуществами.

микроклональное размножение гвоздики

Рис. 24. Формирование побегов каллусной тканью пшеницы

Кроме того, в некоторых случаях он является единственно возможным способом размножения растений в культуре тканей. Через каллусную культуру успешно размножаются сахарная свекла, злаковые (рис. 24), представители рода Brassica, подсолнечник и другие культуры.

Источник

Микроклонирование и размножение растений

Микроклональное размножение растений делится на два этапа – непосредственно размножение растительного материала in vitro (проводится в специализированной лаборатории) и последующая адаптация микроскопических растений (может проводиться любым желающим в домашних условиях).

Первый этап представляет из себя, образно говоря, «микрочеренкование» (массовое размножение при помощи «микрочеренков»). У растения срезают тонкий (0,8 мм) слой с верхушки почки, который содержит клетки верхушечной меристемы. Этот материал помещают на стерильную питательную среду на основе агара (среда в обязательном порядке содержит сахара, питательные элементы, а также в среды на разных этапах микроразмножения могут добавлять фитогормоны). Растительные клетки активно делятся, на питательной среде начинает формироваться маленькое растение – и через некоторое время у него снова срезают верхушечную меристему и переносят на новую питательную среду. Такие пересевы («пассажи») производят несколько раз, в результате растительные клетки адаптируют к развитию на искусственных питательных средах и одновременно снижается вероятность завирусованности растительного материала. Считается, что клетки апикальных меристем свободны от вирусов вследствие своих свойств свойств (т.к. распространение вирусов имеет свою скорость, даже в заражённом растении вирусы «не успевают» проникнуть в активно делящиеся меристематические клетки). В качестве дополнительных процедур возможны химические обработки от вирусов, но они всё-таки действуют на растительные ткани угнетающе.

Запускаемое в массовое размножение микроклональное растение должно быть свободно от вирусов, поэтому его проверяют молекулярно-генетическими методами на отсутствие заражённости. Тест на один вирус стоит порядка 500-700 рублей, набор проверяемых вирусов различен для разных культур. Так, малину тестируют на 5 вирусов. Убедившись в «чистоте» растительного образца, приступают к его массовому размножению. В питательную среду добавляют фитогормон, стимулирующий ветвление. С образующихся многочисленных боковых побегов срезают «микрочеренки» и помещают их на агаровую среду (все операции проводят в стерильных условиях, используя ламинарные шкафы). Технология массовая – за одну рабочую смену оператор делает до 800 микрочеренков. Далее – изменяют состав питательной среды, и меристемные растения начинают образовывать корни. Растения какое-то время подращивают (они находятся в герметичных баночках, на стеллажах с круглосуточным освещением). На этой стадии меристемные растения можно поместить на хранение в холодильник на несколько месяцев. Для некоторых культур это даже является положительным моментом – например, для микроклональной сирени, которая после этого лучше развивается и идёт в рост.

Компания «Микроклон» осуществляет поставки размноженных культур в герметичных пластиковых коробочках по 20 штук растений размером несколько сантиметров, находящихся на питательном агарозном геле. Такие приобретенные микроклональные растения в коробочке можно держать до 10 дней (это крайний срок), оптимально 3-7 дней.

Для дальнейшего выращивания меристемных растений необходима процедура адаптации, во время которой должны произойти фундаментальные физиологические перестройки. Меристемные растения надо «приучить» к «растительному» образу жизни и перестроить весь их обмен веществ. Размноженные микроклонально растения привыкли не фотосинтезировать, а получать углеводы из питательной среды (фотосинтез невозможен при всём желании, т.к. меристемные растения находятся в замкнутом объёме без доступа строительного сырья – углекислого газа из окружающей среды). Корни у меристемных растений толстые, похожие на спички, и не имеют всасывающих волосков. Ввиду 100%-ной влажности среды, на листьях полностью открыты устьица, а листовые пластинки не имеют воскового слоя.

Несмотря на всю фундаментальность поставленных задач, инструментально это достигается очень просто – растения помещают в условия со стабильной температурой (без сквозняков!), достаточным освещением (для фотосинтеза) и постепенно уменьшают влажность среды. Для начала полученные меристемные растения пересаживают. Растения берут пинцетом и осторожно и тщательно отмывают корни водой комнатной температуры от агара (А.Д. заранее ставит несколько кювет с водой и последовательно промывает в них корни). Это необходимо, т.к. иначе агар будет служить замечательной питательной средой для патогенных микроорганизмов. Если при отмывке случайно отломили корешок – не беда (т.к. он всё равно практически не функционален), растение отрастит новый, просто срок адаптации увеличится на 2-3 дня. Высадку проводят в кассеты, в торфяные таблетки диаметром 33 мм или кокосовые диаметром 30 мм. Кассеты ставят на стеллаж с освещением. Специальных процедур предпосадочной стерилизации стеллажей А.Д. за три года пока не применял, т.е. «проблема стерилизации на этом этапе не стоит» (если что, можно применять методы по аналогии с теплицами). Стеллаж накрывают полиэтиленовой плёнкой (100% влажность), потом плёнку начинают чуть приоткрывать на некоторое время, затем открывают всё больше и больше, и наконец снимают совсем. Весь процесс адаптации занимает максимум 4 недели, в среднем 2-3. Самые ответственные и сложные – первые дни адаптации. Лучше приживаются породы, которые ближе к древесным – сирень, алыча и пр., более ранимы породы ближе к травянистым, например, актинидия, при промывке стараться не намочить листья. Эта разница в адаптации в первые 2-3 дня, потом все растения нормально развиваются, если «зацепились».

Полив под корень не применяют. Под кассеты подкладывают капиллярный мат (самодельный: сложенный втрое нетканый материал, накрытый сверху цельным, т.е в 2 слоя ткани, «синтетическим» мешком из-под сахара), который увлажняют не чаще одного раза в сутки – влага из него через отверстия в кассете поступает к растениям. Также периодически опрыскивают растения, в том числе растворами комплексных удобрений в качестве подкормки. Подкормки комплексными удобрениями по листьям можно начинать с четвёртого дня адаптации, концентрацию берут поменьше, но обрабатывают почаще (1, затем 2 раза в неделю). При дальнейшем доращивании растений развитие корневой системы достигается перевалкой, проводимой несколько раз во всё большие по объёму горшки. Есть пока не решённая проблема с тем, что корни через отверстия в горшках проникают в капиллярный мат. В горшках также неравномерно развивается корневая система (закручивается по внутренней поверхности горшка), даже при периодической перевалке. Очень хороши горшки AirPot, но они довольно дорогие, для массового производства их использование слишком накладно.

В сотрудничестве с Компанией «Микроклон» А.Д. массово размножает довольно много декоративных культур, из плодово-ягодных – землянику, малину, ежевику, виноград, один сорт крыжовника, приступили к вопросу микроклонального размножения 2 сортов яблони, есть планы по абрикосу. По личным наблюдениям А.Д., увеличения урожайности у микроклонально размноженных ягодных культур не наблюдается (т.е. она не превышает максимальную для сорта). Однако есть очень много других плюсов. Меристемное растение как бы «обнуляет счётчик», биологически оно является ювенильным, поэтому растёт и развивается очень энергично, но в то же время ведёт себя как взрослое. Так, ремонтантные сорта малины, поставленные на адаптацию микроскопическими растениями в январе – в сентябре уже с плодами. У ежевики за аналогичные сроки плеть вырастает до 1,2 м. К достоинствам технологии относится также то, что при отработанной методике можно быстро и практически в неограниченных количествах размножить ценное растение, возникший новый клон и т.д. Полученные по технологии in vitro растения впоследствии легче размножаются зелёными черенками, т.е. лучше укореняются (из личного опыта А.Д.). Микроклональное размножение позволяет питомниководам продуктивно использовать зимний период.

Не все культуры успешно размножаются микрочеренкованием, но их круг всё равно шире, чем культур, хорошо размножаемых обычным зелёным черенкованием. Проблемы возникают, в частности, с культурами, которые сильно «фенолят» – выделяют корнями в субстрат фенольные соединения, что приводит к отравлению самих меристемных растений, находящихся в замкнутой системе. Очень тяжело вводить в меристемную культуру хвойные, орехоплодные, луковичные. В целом для каждой культуры надо подбирать свои особенности технологии, что может потребовать разного количества времени и усилий. Также приходится подбирать свои условия и для микроклонального размножения разных сортов в рамках одной культуры. Поэтому сортимент введённых в меристемную культуру плодово-ягодных растений пока не очень велик.

К микроклональному размножению часто высказывают упрёк, что оно приводит к мутациям у получаемых растений. Соматические мутации возможны (из-за повышенного гормонального фона), но реально они возникают не так часто, более того, в «Микроклоне» такие мутанты стараются выявлять и оставляют себе для исследований (на предмет получения более хозяйственно-ценных клонов). Действительно реальная проблема есть с сортами, которые являются химерами (например, сорт сирени «Сенсация»). В результате их размножения in vitro действительно часто наблюдается расхимеривание у части растений. Но это максимум 10%, при этом нормальные фирмы для таких случаев специально увеличивают поставляемую заказчику партию меристемных растений (скажем, при заказе на 100 штук выращивают 105).

В целом А.Д. эта технология очень нравится, в планах расширение набора выращиваемых меристемных культур и сортов и продолжение наблюдений. В частности, пока открыт вопрос, не изменяется ли скороплодность плодовых культур при микроклональном размножении. Также интересно посмотреть, будет ли влиять выращивание деревьев на своих корнях на вкусовые качества плодов (в трудах Бербанка и Мичурина есть сведения о положительном влиянии корнесобственности).

Источник

IX Международная студенческая научная конференция Студенческий научный форум — 2017

Пионером клонального микроразмножения считается французский ученый Жан Морель, который в 50-х годах двадцатого века получил первые растения — регенеранты орхидей. В это время техника культивирования апикальных меристем in vitro была уже хорошо разработана. Как правило, исследователи в качестве первичного экспланта использовали верхушечные меристемы травянистых растений: гвоздики, хризантемы, подсолнечника, гороха, кукурузы и т.д. В нашей стране работы по клональному микроразмножению были начаты в 30-х годах в лаборатории культуры тканей и морфогенеза ИФРа. Под руководством Р.Г.Бутенко были изучены условия микроразмножения картофеля, сахарной свеклы, гвоздики, герберы и др. растений и предложены промышленные технологии. В дальнейшем исследования по клональному микроразмножении охватили и древесные растения.

Первые работы по культуре тканей древесных растений были опубликованы в середине 20-х годов нашего столетия и связаны с именем Готре, который показал, что камбиальные ткани некоторых растений способны к каллусогенезу in vitro. Но первые растения — регенеранты осины, доведенные до почвенной культуры, были получены лишь в середине 60-х годов Матесом.

Культивирование тканей хвойных пород in vitro долгое время редко использовалось как объект исследования. Это было связано со специфическими трудностями культивирования тканей, изолированных из растения. Известно, что древесные, и особенно хвойные растения характеризуются медленным ростом, трудно укореняются, содержат большое количество вторичных соединений (фенолы, терпены и т.д.), которые в изолированных тканях активируются. Окисленные фенолы обычно ингибируют деление и рост клеток, что ведет к гибели первичного экспланта или уменьшению способности тканей древесных растений к регенерации адвентивных почек, которая с возрастом растения-донора исчезает практически полностью. В настоящее время, несмотря на перечисленные трудности, насчитывается более 200 видов древесных растений из 40 семейств, которые были размножены in vitro (каштан, дуб, береза, клен, сосна, ель, секвойя и др.).

Этапы микроклонального размножения:

1. Выбор растения-донора, изолирование эксплантов и получение хорошо растущей стерильной культуры.

2. Собственно микроразмножение, когда достигается получение максимального количества меристематических клонов.

3. Укоренение размноженных побегов с последующей адаптацией их к почвенным условиям, а при необходимости депонирование растений-регенерантов при пониженной температуре (+2 о С, +10 о С).

4. Выращивание растений в условиях теплицы и подготовка их к реализации или посадке в поле.

Для культивирования тканей на каждом из четырех этапов требуется применение определенного состава питательной среды.

На первом этапе необходимо добиться получения хорошо растущей стерильной культуры. В тех случаях, когда трудно получить исходную стерильную культуру экспланта, рекомендуется вводить в состав питательной среды антибиотики (тетрациклин, бензилпенициллин и др.) в концентрации 100—200 мг/л. Это в первую очередь относится к древесным растениям, у которых наблюдается тенденция к накоплению внутренней инфекции.

На первом этапе, как правило, используют среду, содержащую минеральные соли по рецепту Мурасига и Скуга, а также различные биологически активные вещества и стимуляторы роста (ауксины, цитокинины) в различных сочетаниях в зависимости от объекта. В тех случаях, когда наблюдается ингибирование роста первичного экспланта, за счет выделения им в питательную среду токсичных веществ (фенолов, терпенов и других вторичных соединений), снять его можно, используя антиоксиданты. Это возможно двумя способами: либо омывкой экспланта слабым его раствором в течение 4—24 ч, либо непосредственным добавлением в питательную среду. В качестве антиоксидантов используют: аскорбиновую кислоту (1 мг/л), глютатион (4—5 мг/л), дитиотриэтол (1—3 мг/л), диэтилдитиокарбомат (2—5 мг/л), поливинилпирролидон (5000—10000 мг/л). В некоторых случаях целесообразно добавлять в питательную среду адсорбент — древесный активированный уголь в концентрации 0,5—1%. Продолжительность первого этапа может колебаться от 1 до 2 месяцев, в результате которого наблюдается рост меристематических тканей и формирование первичных побегов.

2 этап — собственно микроразмножение. На этом этапе необходимо добиться получения максимального количества мериклонов, учитывая при этом, что с увеличением субкультивирований увеличивается число растений-регенерантов с ненормальной морфологией и возможно наблюдать образование растений-мутантов.

Как и на первом этапе, используют питательную среду по рецепту Мурасига и Скуга, содержащую различные биологически активные вещества, а также регуляторы роста. Основную роль при подборе оптимальных условий культивирования эксплантов играют соотношение и концентрация внесенных в питательную среду цитокининов и ауксинов. Из цитокининов наиболее часто используют БАП в концентрациях от 1 до 10 мг/л, а из ауксинов—ИУК и НУК в концентрациях до 0,5 мг/л.

При долгом культивировании растительных тканей на питательных средах с повышенным содержанием цитокининов (5—10 мг/л) происходит постепенное накопление их в тканях выше необходимого физиологического уровня, что приводит к появлению токсического действия и формированию растений с измененной морфологией. Вместе с тем, возможно наблюдать такие нежелательные для клонального микроразмножения эффекты, как подавление пролиферации пазушных меристем, образование витрифицированных (оводненных) побегов и уменьшение способности растений к укоренению. Отрицательное действие цитокининов возможно преодолеть, по данным Н.В. Катаевой и Р.Г. Бутенко, путем использования питательных сред с минимальной концентрацией цитокининов, обеспечивающих стабильный коэффициент микроразмножения, или путем чередования циклов культивирования на средах с низким и высоким уровнем фитогормонов.

3 и 4 этапы — укоренение микропобегов, их последующая адаптация к почвенным условиям и высадка в поле являются наиболее трудоемкими этапами, от которых зависит успех клонального микроразмножения. На третьем этапе, как правило, меняют основной состав среды: уменьшают в два, а иногда и в четыре раза концентрацию минеральных солей по рецепту Мурасига и Скуга или заменяют ее средой Уайта, уменьшают количество сахара до 0,5—1% и полностью исключают цитокинины, оставляя один лишь ауксин. В качестве стимулятора корнеобразования используют β-индолил-3-масляную кислоту (ИМК), ИУК или НУК.

Список литературы: 1) Айала Ф., Кайгер Дж. Современная генетика 3 тома. М., "Мир",1988г.5 2) Алиханян С.И., А.П. Акифьев, Л.С. Чернин. Общая генетика: Учеб. для студ. биол. спец. ун-тов. М.: Высшая школа, 1985. 3) Бахтеев Ф. Х. Академик Николай Иванович Вавилов, «Бюллетень Московского общества испытателей природы. Отд. биологический», 1958, т. 63, в. 3; 4)Дубинин Н. П., Общая генетика, М., 1970. 5) Лобашев М. Е., Ватти К.В., Тихомирова М.М. Генетика с основами селекции, М. Просвещение, 1979.

Источник

Adblock
detector