Методы и методология фр аналитический и синтетический подход причинный анализ Общая и частная фр

Методологические основы фитофизиологии.

Физиология растений – наука, которая изучает закономерности жизненных процессов (фотосинтез, дыхание, минеральное и водное питание, рост и развитие и др.), их сущность и взаимосвязь с окружающими условиями.

Физиология растений относится к биологическим наукам, в самостоятельную науку она выделилась в XIX в. и является отраслью экспериментальной ботаники.

Объектом изучения физиологии растений являются зеленые растения, которые отличаются от всех других форм живых существ способностью использовать в качестве источника энергии электромагнитную энергию света, преобразовывать ее в свободную (химическую) энергию различных органических соединений, что создает материальную и энергетическую базу для существования всех других организмов.

Главная задача физиологии растений – раскрыть сущность процессов жизнедеятельности растительного организма в целях научного обоснования приемов возделывания растений, направленных на повышение их продуктивности и качество продукции. Это позволяет рассматривать физиологию растений как теоретическую основу практического растениеводства и рационального земледелия в целом.

Физико-химический, экологический и эволюционный аспекты физиологии растений

Наряду с общими закономерностями протекания физиологических процессов, свойственных всем растениям вообще, важно знать особенности конкретного вида или сорта растения и его реакцию на условия внешней среды. Важно представить и оптимальные условия произрастания того или иного вида растения. Поэтому различают наряду с общей и частные физиологии растений, например физиологию сахарной свеклы, физиологию пшеницы и т.д.

Подобные нарушения гомеостаза биосистем под влиянием человека встречаются часто. Так, на XII Международном ботаническом конгрессе и последующих Международных ботанических конгрессах ботаников и физиологов всего мира встревожила судьба тропических лесов. Известно, что тропический лес живет только за счет внутреннего круговорота веществ, с нарушением которого бессистемными рубками возобновление леса затруднено или вообще невозможно. Сплошная рубка тропического леса ведет к образованию пустошей или вторичных лесов низкой продуктивности.

В последние годы ученые, используя новейшие физико-химические техники и принципы, серьезно исследуют основные фундаментальные процессы фотосинтеза:

структурно-функциональную организацию фотосинтетического аппарата, молекулярную структуру и физико-химические свойства пигментных систем, механизмы первичных процессов преобразования энергии, структуру и функционирование реакционных центров.

Детально изучены природа компонентов и организация основных функциональных комплексов электрон-транспортной цепи, физиологические механизмы регуляции транспорта электронов, проведен анализ основных путей фотоассимиляции углекислоты и фотосинтетического метаболизма углерода у разных групп растений, исследованы вопросы энергетики фотосинтеза и значение фотоэнергетических реакций в регуляции активности всего комплекса метаболических систем в растении, рассмотрены механизмы эндогенной регуляции фотосинтеза на уровне целого растения, физиологические основы действия внешних факторов, вопросы фотоингибирования, взаимосвязь фотосинтеза с дыханием, минеральным питанием, ростом и другими физиологическими функциями, проблема фотосинтетической продуктивности растений. Важнейший результат этих разносторонних исследований — переоценка общих масштабов фотосинтетической деятельности в биосфере в прошлом и настоящем, а также прогноз ее состояния в ближайшие периоды как функции антропогенного воздействия.

Методологические основы фитофизиологии.

Сочетание различных уровней исследования (субклеточный, клеточный, организменный, биоценотический) как необходимое условие прогресса физиологии растений. Специфические методы фитофизиологии как науки.

Физиология растений, как и вся биология, — наука фундаментальная. Она стремится проникнуть в сущность природного явления, процесса, рас-крыть его механизм. Это отличает ее от прикладных наук, основным содер-жанием которых является решение сугубо утилитарных практических задач. Отсюда вполне понятными становятся слова крупного русского агрохимика А. И. Стебута: «сначала физиология, потом канавы, запруды, машины. »

Существует тесная связь между структурой различных органелл клетки и структурой растения вообще и их физиологическими функциями. Физиологобиохимическая эволюция живых организмов на Земле предшествовала структурной.

Одна единственная мутация, приведшая к появлению нового белка-фермента, могла дать в результате совершенно новые структуры. В связи с бурным развитием молекулярной биологии различия между строением клеточных структур и их функциями все более и более стираются, все труднее становится провести грань между ними. Ярким примером этому служит изучение биологических мембран.

Основным средством познания физиологических процессов является эксперимент, опыт, т.е. физиология растений — наука экспериментальная. Различают лабораторные, вегетационные и полевые опыты. Лабораторные опыты проводятся с семенами, проростками, изолированными органами, тканями, клетками, органеллами.

Вегетационные опыты проводят с растениями, которые выращивают в вегетационных домиках, теплицах или фитотронах (камерах искусственного климата), в сосудах, заполненных почвой или искусственной питательной смесью. Непосредственно в поле, в лесу ставятся полевые опыты. Если задача первых заключается в познании механизмов процессов и их отклонений в зависимости от заданных параметров внешней среды, то вторых и третьих — проверка действия тех или иных практических мероприятий на ход и интенсивность жизненных процессов растений и их продуктивность.

Изучение влияния факторов внешней среды на ход и направленность, а нередко и механизм физиологических процессов, является предметом особой ветви физиологии растений — экологической физиологии, особенно важной для агронома и лесовода.

Из частных методов, получивших широкое распространение в физиологии и биохимии растений, следует назвать газожидкостную распределительную хроматографию, метод меченых атомов, культуру тканей и органов, электронномикроскопический, электромагнитного резонанса, электрофоретический и некоторые другие.

В связи с возросшим интересом человека к мировоззренческим вопросам научного познания в физиологии растений, равно как и в других науках, все шире стали использоваться наряду с частными методами и более общие приемы научного познания — методологические подходы. Они непосредственно не связаны с какой-либо конкретной наукой.

К методологическим подходам относят исторический, системно-структурный, целевой, взаимодействие наук и их методов в познании, принцип симметрии.

— Исторический подход (метод) диктует необходимость знать историю развития (филогенез) вида или сорта растения, условия, в которых формировался тот или иной вид растения, его биохимическую эволюцию, т.е. учитывать фактор времени. Без учета особенностей развития вида иногда трудно оценить или объяснить результаты научного опыта с растениями.

— При использовании системно-структурного подхода объект рассматривается как система, т.е. комплекс взаимодействующих компонентов или процессов. Специфика той или иной системы не исчерпывается лишь особенностями составляющих ее элементов, а связана, прежде всего, с характером взаимоотношений между ними.

Биологические системы делятся на два больших класса. Системы первого класса состоят из функционально разнородных элементов и характеризуются целостностью специализированных взаимодополняемых немногочисленных элементов (клетка с органеллами, растительный организм, состоящий из отдельных органов). Второй класс представлен системами, состоящими из многих функционально однородных взаимозаменяемых элементов (ткани из отдельных клеток, популяции из организмов одного вида и т. д.).

В зависимости от глубины и уровня исследования системно-структурный подход включает следующие аспекты: содержательный, логический и энергетический (термодинамический).

— Содержательный аспект используется при обычном экспериментальном изучении растения, его жизненных отправлений с получением конкретных научных материалов. Так как все части растения не только связаны между собой, но и взаимодействуют, то при изучении жизни листа важно знать и физиологические процессы, протекающие, например, в корневых системах.

— Логический (математический, кибернетический) аспект используется обычно тогда, когда исследование самого объекта затруднено или вообще невозможно или требует слишком много времени и средств. Ярким примером использования данного аспекта системно-структурного подхода является широкое использование электронновычислительных машин (ЭВМ), с помощью которых исследователь перебирает многие варианты для достижения, например, оптимальных условий выращивания растений в теплицах.

— Применение энергетического аспекта связано со знанием законов термодинамики и влияния движения тепла на свойства системы, обычно саморегулируемой. С помощью этого приема можно описать движение воды в растении или в более сложной системе почва — растение — атмосфера.

Системно-структурный подход имеет большое значение в научном познании, ибо дает возможность рассматривать объект как специфическую систему взаимодействующих элементов, позволяет глубже выявить особенности структуры и функции рассматриваемой системы, помогает находить новые пути и направления научных исследований.

— В тех случаях, когда конечный результат того или иного процесса нельзя установить опытным путем, используют целевой подход. В данном случае процесс или явление рассматривается в виде тенденции развития, гипотетически. При этом неважно, может ли какое-либо явление или процесс быть целесообразным в непосредственном смысле слова или нет. Исследование ведется таким образом, как будто результат процесса имеется в действительности в виде своеобразной цели. Цель выступает здесь как нечто условное. Исследователь улавливает тенденцию развития процесса, структуры, явления и с учетом этого строит свои научные программы.

Целевой подход — это основной прием гипотетического предвосхищения, описания процесса и явления, подлежащего последующему анализу, изучению. Он очень полезен при постановке новых проблем, разработке новых научных направлений и программ, варьировании экспериментов.

— Живой растительный организм — это очень сложная биологическая саморегулирующаяся система. Чем сложнее система, тем более глубокими и всесторонними становятся ее связи с другими объектами или системами, тем сложнее формы ее существования. Поэтому необходимо проводить комплексные физиологические и биохимические исследования с участием представителей смежных дисциплин, т.е. использовать взаимодействие наук и их методы в познании одного и того же объекта. Отсюда возникло крылатое выражение «работать на стыках наук». В наше время именно на стыке наук рождаются научные открытия, утверждается принцип многокачественности и полиструктурности изучаемого объекта или системы.

Ярким примером этому являются комплексные исследования растительных сообществ, начало которым положил академик В.Н. Сукачев (биогеоценология).

— Использование принципа симметрии основано на том, что в природе обычно наблюдается пропорциональное расположение частей целого в пространстве, соответствие одной части объекта другой. Применительно к физиологии и биохимии растений этот принцип незаменим при изучении лево- и правовращающихся оптически активных органических соединений, их свойств и роли в жизни растений, при исследовании ядов и противоядий, стимуляторов и ингибиторов и т. д.

Источник



Методы физиологии растений

Физиология растений относится к числу экспериментальных наук. Экспериментом в физиологии называют изучение физиологического явления в искусственно создаваемых условиях. При этом может изучаться либо отдельная функция (фотосинтез, дыхание и т.д.), либо воздействие отдельного фактора на комплекс функций, или влияние комплекса воздействий на жизнедеятельность растения в целом (например, антропогенные воздействия). Опыты могут быть лабораторными и полевыми.

Лабораторные эксперименты позволяют глубоко исследовать явления, происходящие на клеточном субклеточном и молекулярном уровнях.

К современным приемам и методам исследования относятся:

Световая микроскопия – приготовление тонких окрашенных срезов (разрешающая способность – 0,2 мкм х 2000 раз).

Электронная микроскопия – обычные приемы – фиксация быстрым замораживанием, скол и травление напылением ионов тяжелых металлов (500-800 А˚, — обычно рассматриваемые объекты, разрешающая способность 3-10 А˚, увеличение 1000000 раз).

Разрешающая способность светового микроскопа ограничена длиной световых волн. Максимально возможное разрешение равно ½ λ используемого света. Средняя λ видимого света составляет примерно 550 км, поэтому удавалось получить разрешение примерно в 200 км. Однако многие клеточные структуры имеют меньший размер. Эта проблема была разрешена в 30-40 годы, когда создание электронного микроскопа произвело революцию в биологической науке. Вместо света в электронном микроскопе используют пучок электронов, у которых λ значительно меньше, следовательно разрешительная способность больше, примерно в 500 раз больше.

Подготовка материала к исследованию включает следующие приемы:

1. Срезы готовятся на ультратоме окрашиваются соединениями тяжелых металлов. Окрашенные участки становятся непроницаемыми и на микрофотографиях они выглядят темными.

2. Напыление. Образец бомбардируется атомами тяжелых металлов, например золотом или платиной, под определенным углом. Закрытые площади + «тень» за образцом остаются прозрачными для электронов.

3. Замораживание – скалывание и замораживание – травление.

Фрагмент ткани быстро замораживается при очень низкой температуре и затем разламывается с помощью острого металлического лезвия. Ткань растрескивается вдоль слабо соединенных плоскостей. В вакууме лед возгоняется, оставляя сколотую поверхность. Реплика этой поверхности создается слоем углерода. На эту реплику из углерода напыляется тяжелый металл, а также под репликой разрушаются кислотой. Этот метод удобен при изучении структуры мембран. Его преимущество состоит в том, что ткани быстро умерщвляются, не подвергаясь химической обработке, которая может повлиять на их структуру.

Дифференциальное центрифугирование. Широко используют для исследования биохимических и физиологических механизмов работы клетки. При этом клеточные фракции сохраняют свою морфологическую и функциональную целостность.

Хроматография – разделение веществ /бумажная, колоночная/.

Метод хроматографии впервые предложен русским ученым Цветом в 1906 году и сейчас широко используется.

Хроматография – это метод, применяемый для разделения различных смесей на составляющие их компоненты. Метод основан на том, что в неподвижной среде, через которую протекает растворитель, каждый из компонентов, увлекаемых растворителем, движется со своей собственной скоростью независимо от других.

В качестве неподвижной среды /адсорбента/ могут быть использованы различные вещества: сахароза, окись магния, крахмал, стекло, бумага и т.д. Подвижность вещества зависит от его растворимости в растворителе, пропускаемом через адсорбент и адсорбируемости на данном адсорбенте. Чем выше растворимость вещества в растворителе, тем хуже он адсорбируется на адсорбенте, тем больше его подвижность. Применяя разные комбинации растворителей и адсорбенты различной природы, можно добиться высокой степени разделения.

Метод меченых атомов – введение радиоактивной метки и обнаружение ее при помощи массспектрометра.

Вегетационный опыт – опыт, проводимый в сосудах, где экспериментатор дозирует и контролирует количество питательной среды для выращивания растений, ее качественный или количественный состав и т.д. Если опыт ведется в теплице, то регулированию поддается свет и температура.

Вегетационные опыты позволяют установить закономерности роста и развития растений от изучаемого фактора.

Полевой опыт – ведется в полевых условиях (природных). Ввиду пестроты природных условий: неоднородность почвы, склоны, вредители, осадки и т.д. – точность полевого опыта значительно меньшая.

Источник

Методы и методология фр: аналитический и синтетический подход, причинный анализ. Общая и частная фр

Основной метод познания процессов, явлений в физиологии — эксперимент, опыт. Следовательно, физиология растений — наука экспериментальная.

Для изучений физико-химической сути функций, процессов в физиологии растений широко применяют методы: лабораторно-аналитический, вегетационный, полевой, меченых атомов, электронной микроскопии, электрофореза, хроматографического анализа, ультрафиолетовой и люминесцентной микроскопии, спектрофотометрии и др. Кроме того, используют фитотроны и лаборатории искусственного климата, в которых выращивают растения и проводят опыты в условиях определенного состава воздуха, нужной температуры и освещения. Применяя эти методы, физиологи исследуют растения на молекулярном, субклеточном, клеточном и организменном (интактное растение) уровнях.

Сейчас в биологических исследованиях широко применяют электронные микроскопы просвечивающего типа с разрешающей способностью 0,15—0,5 нм, в которых объект рассматривают в электронных лучах, проходящих через него. Значительное увеличение разрешающей способности электронных микроскопов по сравнению со световыми обусловливается меньшей длиной волны электронов (на пять порядков меньшей, чем длина волны ультрафиолетовых лучей).

Кроме того, для биологических исследований применяют так называемые растровые электронные микроскопы, в которых изображение создается по принципу телевизионных. Разрешающая способность растровых микроскопов равна 20—40 нм, с их помощью изучают строение поверхности пыльцы, эпидермального слоя клеток, формы клеток и др. Применение электронной микроскопии в биологии имеет большое значение для развития биологической науки и физиологии растений в частности.

Исследование ультраструктуры органоидов растительной клетки (хлоропластов, митохондрий, рибосом, мембранных структур) дало возможность раскрыть суть процессов фотосинтеза и дыхания, которые определяют возможность самой жизни на нашей планете. Изучение строения клеточных оболочек, открытие цитоплазматических мембранных структур способствовали выяснению процессов обмена веществ и энергии в клетке, изучению структуры и функции органоидов растительной клетки. Большое принципиальное значение имеет электронно-микроскопическое исследование строения РНК и ДНК, локализации их на структурных компонентах клетки. Результаты этих исследований легли в основу раскрытия генетической роли ядра и проблемы наследственности.

Общая фр изучает физиологические функции (фотосинтез, дыхание растений, транспирацию, рост, развитие и др), устанавливая закономерности общие для всех видов растении.

Частная фр изучает конкретные физиологические особенности отдельных видов сортов растений.

Источник

1 Предмет, задачи и методы физиологии растений

Физиология растений — наука, которая изучает процессы жизнедеятельности и функции растительного организма. Слово «физиология» греческого происхождения; оно состоит из двух слов: physis — природа и logos — понятие, учение. Физиология растений является наиболее развитой отраслью экспериментальной ботаники, которая в XIX в. выделилась в самостоятельную науку. Она тесно связана с химией, физикой, биохимией, биофизикой, микробиологией, молекулярной биологией.

Перед научными работниками, физиологами растений поставлены такие задачи: изучить обмен веществ и энергии в растительном организме, фотосинтез, хемосинтез, биологическую фиксацию азота из атмосферы и корневое питание растений; разработать методы повышения использования растениями солнечной энергии и питательных веществ почвы, обогащения почвы азотом; создать новые, более эффективные формы удобрений и разработать методы их применения; исследовать действие биологически активных веществ с целью использования их в растениеводстве; разработать методы более продуктивного использования воды растением. Без решения этих вопросов невозможно решение и ряда других проблем земледелия и растениеводства, направленных на повышение урожайности.

Интенсивное применение минеральных удобрений, гербицидов, физиологически активных веществ, химических препаратов для защиты растений от болезней и вредителей требует глубокого и всестороннего изучения их влияния на рост и обмен веществ растительных организмов с целью значительного повышения продуктивности сельскохозяйственных растений. Решение поставленных задач имеет большое значение для разработки проблем ускорения научно-технического прогресса в растениеводстве и дальнейшего развития сельского хозяйства нашей страны. Основной метод познания процессов, явлений в физиологии — эксперимент, опыт. Следовательно, физиология растений — наука экспериментальная.

Для изучений физико-химической сути функций, процессов в физиологии растений широко применяют методы: лабораторно-аналитический, вегетационный, полевой, меченых атомов, электронной микроскопии, электрофореза, хроматографического анализа, ультрафиолетовой и люминесцентной микроскопии, спектрофотометрии и др. Кроме того, используют фитотроны и лаборатории искусственного климата, в которых выращивают растения и проводят опыты в условиях определенного состава воздуха, нужной температуры и освещения. Применяя эти методы, физиологи исследуют растения на молекулярном, субклеточном, клеточном и организменном (интактное растение) уровнях.

Сейчас в биологических исследованиях широко применяют электронные микроскопы просвечивающего типа с разрешающей способностью 0,15—0,5 нм, в которых объект рассматривают в электронных лучах, проходящих через него. Значительное увеличение разрешающей способности электронных микроскопов по сравнению со световыми обусловливается меньшей длиной волны электронов (на пять порядков меньшей, чем длина волны ультрафиолетовых лучей).

Кроме того, для биологических исследований применяют так называемые растровые электронные микроскопы, в которых изображение создается по принципу телевизионных. Разрешающая способность растровых микроскопов равна 20—40 нм, с их помощью изучают строение поверхности пыльцы, эпидермального слоя клеток, формы клеток и др. Применение электронной микроскопии в биологии имеет большое значение для развития биологической науки и физиологии растений в частности.

Исследование ультраструктуры органоидов растительной клетки (хлоропластов, митохондрий, рибосом, мембранных структур) дало возможность раскрыть суть процессов фотосинтеза и дыхания, которые определяют возможность самой жизни на нашей планете. Изучение строения клеточных оболочек, открытие цитоплазматических мембранных структур способствовали выяснению процессов обмена веществ и энергии в клетке, изучению структуры и функции органоидов растительной клетки. Большое принципиальное значение имеет электронно-микроскопическое исследование строения РНК и ДНК, локализации их на структурных компонентах клетки. Результаты этих исследований легли в основу раскрытия генетической роли ядра и проблемы наследственности.

Место физиологии растений среди других наук

В основе физиологических функций растений лежит преобразование веществ и энергии в соответствии с законами физики и химии. Это означает, что указанные науки являются фундаментом физиологии растений. Физиология растений связана с анатомией и морфологией растений, так как строение органа и его функции взаимосвязаны. Но, еще К. А. Тимирязев подчеркивал, что выяснить до конца функцию, а тем более ее связь со строением соответствующих частей растений можно только основываясь на принципе эволюционного учения. Являясь ботанической дисциплиной, отделившейся от ботаники, физиология растений тесно связана с физиологией животных. Дыхание, питание, рост, раздражимость, размножение – все это свойства живых организмов как животных так и растений. И для того, чтобы понять жизнь растений, необходимо очень хорошо знать свойства всех живых организмов. В этой связи предпринималось много попыток создать общую физиологию, которая бы охватывала жизненные явления во всех живых организмах. Специфические особенности растений в этих условиях отходят на задний план, поэтому, с точки зрения более глубокого освещения проблем физиологии растений, именно ее преподавание является более оправданным, т. е. физиология растений – это самостоятельная наука, имеющая свои особенности. Тесно соприкасаясь с биологическими дисциплинами описательного характера, физиология отличается от них тем, что фундаментом своим имеет, как мы уже отметили, науки физико-химические. Поэтому в своем анализе жизненных явлений, раскладывая более сложные процессы на более простые, мы все время обращаемся к помощи физики и химии, т. е. развитие физиологической науки тесно связано с развитием наук физико-химических. Так как управление жизненными процессами растений и их использование для нужд человека составляет главную задачу растениеводства, то физиология растений является одной из главнейших основ наук агрономических. Физиология растений является основной для рационального земледелия. И наоборот, проблемы агрономического характера являются стимулом в разработке определенных физиологических проблем, при этом в разработке этих вопросов принимают участие и сами представители агрономической науки. Их работам физиология растений обязана очень многим, особенно в вопросах питания растений. Имена таких ученых как Ж. Б. Бусенго, И. В. Мичурин, В. Р. Вильямс, Д. Н. Прянишников и др. в истории физиологии растений занимают почетные места. Очень интересно высказался К. А. Тимирязев, который писал, что физиология растений займет со временем такое же положение в отношении агрономии, какое физиология человека уже заняла по отношению к медицине. Как врач не может лечить больного, не зная физиологии человека, так и агроном не может работать, не зная физиологии растений. Почему? Задача агронома – получать высокие урожаи. Урожай – это листья, стебли, семена, плоды, клубни, это значит органы растений, которые образуются в период жизни растений, а физиология – наука о жизни растительного организма. Физиология растений настолько тесно связана с агрохимией, что между ними нельзя провести реальную границу. Учение о почвенном питании растений неразрывно связано с учением об удобрениях, а поэтому естественно агрохимики часто переходят к решению проблем физиологии питания растений, а физиологи принимают участие в разработке вопросов применения удобрений. Большое значение физиология имеет и для полеводства. Большая часть агротехнических приемов представляет собой не что иное, как создание для растений как можно более благоприятных условий существования, при которых они дали бы наибольший урожай. Например, приемы обработки почвы для создания более благоприятной для растений структуры и для уничтожения сорняков, приемы, которые служат для удержания и накопления в почве необходимой для растений влажности в сухих районах и т. д. Тесная связь существует между физиологией растений и селекцией. Отбор и создание новых сортов ставят своей задачей повышение урожая и качества продуктов, а для целенаправленного отбора необходимо знать физиологические признаки сортов: их скороспелость, зимоустойчивость, засухоустойчивость и т. д. Эти сведения можно получить только при постоянном физиологическом изучении сортов. Еще больше эта связь проявляется в том, что физиология растений, изучая растения в условиях окружающей среды, помогает селекционерам изменять природу растений в необходимую для практики сторону с помощью управления их жизнедеятельностью. Физиология является источником новых приемов воздействия на растения, при помощи которых можно уже в определенных условиях поднять урожай или повысить устойчивость к неблагоприятным факторам среды, ускорить развитие или улучшить качество урожая. К таким новым приемам следует отнести впервые найденные физиологами способы ранней выгонки растений с помощью эфиризации и разных химических агентов. Необходимо также сказать и об разработанных физиологами приемах светокультуры растений в зимний период в теплицах, способах ускорения и получение корнеобразования у черенков, получения безсеменных плодов с помощью физиологически активных веществ. Очень большое значение имеет физиология растений для успешного решения экологических проблем. Способность зеленых растений «улучшать» воздух была отмечена еще первыми физиологами растений. Это положение, как вы знаете, происходит за счет выделения растениями кислорода. Только поэтому стала возможной жизнь животных. Не последнюю роль играет физиология растений в космической биологии. Если при коротких путешествиях всю необходимую пищу и воду можно захватить с Земли, то при космических путешествиях на большие расстояния необходимы более независимые и замкнутые системы жизнеобеспеченности. Растения, как видно, будут служить ценным и важным компонентом такой системы, потому что они могут дать не только постоянное обеспечение пищей, но обеспечить переработку отходов человека. Люди, которые находятся в космосе (корабле) вдыхают кислород и выдыхают углекислый газ. Зеленые же растения в процессе фотосинтеза обеспечивают обратный процесс. Продукты выделения человека могут частично удовлетворить потребности растений в питательных веществах, а выделяемая при транспирации вода, соответствующим образом конденсированная, может служить питьевой водой. Для получения еды, очистки воздуха, переработки отходов можно использовать и водоросли, в частности хлореллу. Но несомненно, что для увеличения количества продуктов, их разнообразия, а также для оптимального использования очистных способностей будут применяться как одноклеточные водоросли, так и многоклеточные растения. Чтобы все это претворить, необходимы знания физиологии растений: необходимо знать, как проходят процессы фотосинтеза, дыхания и др. конкретных условиях. Особое место занимает физиология растений в проблемах Республики, связанных с радиобиологией, особенно после аварии на ЧАЭС. Только вскрытие механизмов поступления, накопление радионуклидов растениями, их влияние на процессы жизнедеятельности растений можно наметить пути успешной борьбы с радиоактивным загрязнением. Таким образом, научные успехи в области физиологии растений являются основой успехов многих наук. Благодаря этим успехам, например, сельское хозяйство оказалось способным кормить все возрастающее население земного шара. Обеспечение человечества продуктами питания в будущем зависит от продолжения исследований в области роста растений, создания способов ведения хозяйства, которые бы обеспечивали оптимальный рост. Интенсивность таких исследований зависит от того, какое значение и внимание будут уделять сельскому хозяйству и научным исследованиям в области растениеводства и физиологии растений. Что служит объектом исследования? Конечно растения, но какие? Флора Земли представлена большим количеством видов, которые произрастают на севере и юге, во влажных и сухих местах, среди растений имеются и травы, и деревья. Основными объектами физиологии растений служат фототрофные организмы, т. е. растения, которые синтезируют органические вещества из минеральных элементов с помощью энергии света. Эти растения отличаются от других (незеленых) тем, что в них идет фотосинтез. Фотосинтез – это процесс органических веществ из неорганических (СО2 и воды) с помощью энергии света. Необходимость поглощения большого количества СО2 воздуха, где по теперешним данным его содержится 0,045 %, привело к формированию большой по сравнению с животными поверхности тела. Неограниченный рост в период всей жизни – еще одна из особенностей растений. Далее, всю жизнь растения проводят на одном месте. Но среди живых организмов есть и гетеротрофы, к которым относятся все животные, грибы и большая часть бактерий. Среди растений также имеются факультативные или аблигатные гетеротрофы, которые получают пищу из окружающей среды: сапрофиты, паразиты и насекомоядные растения. Сапрофиты (сапротрофы) используют органические вещества разлагающихся остатков животных и растений, а паразиты – органические вещества живых организмов. Насекомоядные растения способны ловить и переваривать мелких беспозвоночных. У растений есть периоды, когда они питаются за счет ранее запасенных веществ (гетеротрофно): прорастание семян, органов вегетативного размножения (клубни, луковицы и др.), развитие почек и цветков у листопадных древесных растений и т. д. Также все ткани и органы растений имеют гетератрофное питание в темноте. Поэтому в культуре можно выращивать изолированные растительные клетки и ткани без света. Что означает изучать жизнь растений? Это означает изучать его функции: воздушное питание – фотосинтез, корневое питание – поступление минеральных веществ из почвы, транспорт веществ, поступление воды, рост и развитие организма, движение органов, приспособление к условиям окружающей среды. Предмет физиологии растений – это изучение всех функций растительного организма, установление связи функций и их зависимости от внешних и внутренних факторов, изучение взаимоотношений органов растений. Таким образом, физиология не останавливается на описании каких-либо особых произвольно взятых свойствах и процессах, а выступает как система законов и закономерностей о жизни растительного организма.

Источник

Adblock
detector