Механизмы и факторы эволюции форм растений

Эволюция растений

Урок 8: Эволюция растений

Изначально на Земле было полно питательных веществ. Первые организмы были гетеротрофными одноклеточными и безъядерными, то есть не могли самостоятельно синтезировать органические соединения. Они питались тем, что находили в Мировом океане. Постепенно запасы истощались, а организмов становилось всё больше. Для выживания в такой конкуренции требовалась кардинально новая стратегия.

Так появились первые фотосинтезирующие организмы. Они могли питаться энергией солнечного света и сами производили органические вещества. 2,7млрд лет назад возникли цианобактерии — предки современных растений, которые живы и по сей день.

Раньше их называли синезелёными водорослями, но это не совсем верно. Хоть цианобактерии и умеют фотосинтезировать, они относятся не к растениям, а к бактериям.

У древних бактерий одиночная клетка, в которой нет оформленного ядра, митохондрий, эндоплазматической сети и вакуолей, заполненных клеточным соком. Клетка окружена прочной клеточной стенкой, которая состоит из четырёх слоёв. Часто снаружи стенки расположен ещё и слизистый слой.

Клетки могутфотосинтезировать благодаря наличию в них пигментов: хлорофилла, каротиноидов, фикоцианина и фикоэритрина. Пигменты придают цианобактериям определённую окраску:

  1. Хлорофилл — зелёная окраска;
  2. Каротиноиды — жёлтая и оранжевая окраска;
  3. Фикоцианин — синяя окраска;
  4. Фикоэритрин — красная окраска.

Цианобактерии размножались, заселяли планету и выделяли кислород как побочный продукт фотосинтеза. Это навсегда изменило атмосферу планеты. За почти весь кислород, которым мы дышим, можно сказать спасибо цианобактериям. Появление огромного количество кислорода в атмосфере привело к вымиранию почти всей анаэробной фауны Земли, то есть тех живых организмов, которым для развития не нужен был кислород. Это событие именуется кислородной катастрофой Земли.

1 cianobakterii
Цианобактерии

Цианобактерии — одноклеточные организмы. Далее эволюция растений разработала многоклеточные организмы. Затем — водоросли. У водорослей нет тканей и органов. Их тело представлено неорганизованным многоклеточным образованием — талломом. По-другому таллом называют слоевищем. К прикреплённым ко дну водорослей развиваются аналоги корней — ризоиды.

У водорослей тоже есть в составе различные пигменты, поэтому они могут по-разному окрашиваться. Окраску зелёных водорослей (хламидомонада, хлорелла) определяет хлорофилл, окраску бурых водорослей (ламинария, фукус) — фукоксантин, окраску красных водорослей (порфира, филлофора) — сочетание хлорофилла, каротиноидов и фикобилина.

2 vodorosli
Водоросли

После жизни перестало хватать Мирового океана: так растения вышли на сушу.

Этапы эволюции растений

Водоросли решили развиваться в двух направлениях: одни выбрали дорогу мохообразных, другие — риниофитов.

Мохообразные. У мхов, как и у водорослей, нет настоящих корней: они прикрепляются к земле ризоидами. В отличие от корней, ризоиды — одноклеточные нитевидные образования. У них нет специальных зон со своей специализацией. Мхи относятся к элементарным растениям, не способным к запасанию.

3 mhi
Мхи

Риниофиты. Другое название — псилофиты. Растения, которые выбрали это направление, выиграли в эволюционной гонке. Сами риниофиты вымерли, но большинство растительных организмов, которые мы наблюдаем сейчас, являются их потомками. У риниофитов не было листьев. Это были первые высшие растения с развитыми проводящими (древесина, луб) и покровными тканями (эпидерма). Благодаря сосудам, их останки хорошо сохранились в окаменевших породах. Остатки служат доказательством эволюции растений.

4 raniofity
Риниофиты

Также учёные находят остатки папоротникообразных в залежах каменного угля и цианобактериальные маты — отложения древних сообществ. Всё это служит напоминанием об эволюции растительных организмов.

5 cianobakterialnye maty
Цианобактериальные маты

Псилофиты существовали совсем недолго. От риниофитов произошли папоротникообразные: папоротники, хвощи и плауны. У них развиты ткани, но имеется один существенный недостаток. Половое размножение папоротникообразных зависит от воды: сперматозоид и яйцеклетка сливаются с друг другом и образуют зиготу только во время дождя.

6 paporotnikoobraznye
Папоротникообразные

Далее появились голосеменные растения. У них вместо сперматозоида образуется спермий — неподвижная мужская половая клетка. Пыльца становится пыльцевой трубкой, формируя неподвижные безжгутиковые спермии. Они соединяются с яйцеклеткой. Из сформировавшейся зиготы вырастает семя. Шишка одревесневает, открывается, освобождая семена для дальнейшего распространения. Однако, всё это время семена беззащитны перед неблагоприятными условиями среды.

7 golosemmenye
Голосеменные растения

Покрытосеменные довели процесс полового размножения практически до совершенства. Вегетативная клетка удлиняется и становится пыльцевой трубкой. Она вырастает и пробирается к зародышевому мешку. Генеративная клетка делится на 2 неподвижных спермия. Один из них соединяется с яйцеклеткой, образуя зиготу. Второй объединяется с центральной клеткой, формируя в дальнейшем эндосперм. Этот процесс именуется двойным оплодотворением. В отличие от голосеменных растений, далее семя защищается от неблагоприятных воздействий мощным околоплодником.

8 pokrytosemennye
Покрытосеменные растения

Именно в таком порядке появились привычные растения. Порядок их образования изображают в виде дерева, которое называется филогенетическим.

9 filogeneticheskoe drevo
Филогенетическое древо растительного мира

Антропогенное воздействие на растения

Как вы помните из прошлого урока, антропогенные экологические факторы — это воздействие человека на окружающую среду. К сожалению, на развитие растений влияет не только конкуренция, которая ведёт к совершенствованию, но и негативное воздействие человека, которое ведёт к уничтожению видов и искажению окружающей среды.

Процесс воздействия идёт в четырёх направлениях:

  1. Уменьшение разнообразия видов. Человечество вырубает леса, вследствие чего уменьшается не только количество деревьев, но и число тех растений, которые росли под их кронами. Токсичные отходы убивают растения, которые живут рядом с заводами и дорогами. Это ведёт к полному изменению растительного сообщества. Леса заменяются культурными растениями, среди которых не происходит такого активного круговорота веществ. Это влияет не только на растения, но и на лесных животных.
  2. Разграничение растительных сообществ. Между сообществами создаются барьеры, что приводит к раздельной эволюции мелких групп. В результате такого раздельного развития большие таксоны делятся на мелкие. Простой пример: проложение дороги посреди растительного сообщества. Растения перестают взаимодействовать между собой: конкурировать, размножаться. В конце концов, могут совсем потерять связь.
  3. Объединение растительных сообществ. Этот процесс идёт в совершенно другом направлении. Из-за уничтожения барьеров и перемещения людей растительные сообщества могут объединиться и сродниться между собой. Например, в Польше так появились потомки близких, но разных видов: лиственницы польской и лиственницы европейской.
  4. Появление растений загрязнённых местообитаний. В результате загрязнений изменяется среда обитания, а вместе с этим и растительные сообщества. В Канаде зарегистрированы мутантные формы голубики близ загрязнённых территорий.

Негативное влияние антропогенного загрязнения очевидно. При этом выделяют три класса взаимодействия загрязнения и растительных сообществ:

  1. Низкий уровень загрязнения. Растения способны поглощать такое загрязнение и очищать атмосферный воздух. Влияние на растительные сообщества незаметно.
  2. Средний уровень загрязнения. Нарушается баланс в сообществе. Растения болеют чаще, так как снижается их иммунитет. Изменяется структура сообщества.
  3. Высокий уровень загрязнения. Отмечается высокий уровень гибели растений. Сообщество упрощается незамедлительно.

Существуют виды, по которым можно судить об уровне загрязнения окружающей среды. Метод называется биоиндикацией. В основном используются лишайники. Тогда биоиндикация становится лихеноиндикацией. Они особо чувствительны к вредным воздействиям, поэтому даже при низком уровне загрязнения массово погибают.

10 lihenoidikacia
Лихеноиндикация

Устойчивые виды используют для очищения атмосферного воздуха. К таким видам относятся тополь и лиственница.

Чтобы предотвратить гибель растений, люди организуют особо охраняемые природные территории:

  1. Заповедник. На территории заповедника запрещена хозяйская деятельность. Возможно строительство только объектов научно-исследовательского и экскурсионного характера. Примеры: Алтайский заповедник, Уссурийский заповедник.
  2. Заказник. На территории заказника возможна хозяйская деятельность, которая не вредит охраняемым объектам окружающей среды. Примеры: Ярославский заказник, Саратовский заказник.
  3. Национальный природный парк. На территории национального природного парка разрешена хозяйская деятельность в ограниченных масштабах. Примеры: Национальный природный парк «Таганай», Национальный природный парк «Зюраткуль».
  4. Ботанический сад. В ботаническом саду хранят редкие растения.

11 altaiskii zapovednik
Алтайский заповедник

Также люди ведут красную книгу — это сборник находящихся под угрозой исчезновения живых организмов. Её создали, чтобы привлечь внимание к проблеме исчезновения видов из-за антропогенного воздействия на окружающую среду. Первая красная книга издана в 1966 году.

12 krasnaya kniga
Красная книга

Кроме красной книги, есть ещё чёрная и зелёная книги. В чёрной книге хранится список уже вымерших организмов, которых человечество не успело спасти.

13 chernaya kniga
Чёрная книга

Зелёная книга — документ, в котором описаны имеющие значение растительные сообщества.

Источник

Эволюция растений

Планета Земля образовалась более 4,5 млрд. лет назад. Первые одноклеточные формы жизни появились возможно появились около 3 млрд. лет назад. Сначала это были бактерии. Их относят к прокариотам, так как у них нет клеточного ядра. Эукариотические (имеющие в клетках ядра) организмы появились позже.

Растениями считаются эукариоты, способные к фотосинтезу. В процессе эволюции фотосинтез появился раньше, чем эукариоты. В то время он существовал у некоторых бактерий. Это были сине-зеленые бактерии (цианобактерии). Некоторые из них сохранились до наших дней.

Согласно наиболее распространенной гипотезе эволюции, растительная клетка образовалась путем попадания в гетеротрофную эукариотическую клетку фотосинтезирующей бактерии, которая не была переварена. Далее процесс эволюции привел к появлению одноклеточного эукариотического фотосинтезирующего организма, имеющего хлоропласты (их предшественников). Так появились одноклеточные водоросли.

Следующим этапом в эволюции растений было возникновение многоклеточных водорослей. Они достигли большого разнообразия и обитали исключительно в воде.

Поверхность Земли не оставалась неизменной. Там, где земная кора поднималась, постепенно возникала суша. Живым организмам приходилось адаптироваться к новым условиям. Некоторые древние водоросли постепенно смогли приспособиться к наземному образу жизни. В процессе эволюции их строение усложнялось, появлялись ткани, в первую очередь покровная и проводящая.

Первыми наземными растениями считаются псилофиты, которые появились около 400 миллионов лет назад. До наших дней они не дожили.

Дальнейшая эволюция растений, связанная с усложнением их строения, шла уже на суше.

Во времена псилофитов климат был теплым и влажным. Псилофиты произрастали недалеко от водоемов. У них были ризоиды (подобие корней), которыми они закреплялись в почве и всасывали воду. Однако у них не было настоящих вегетативных органов (корней, стеблей и листьев). Продвижение воды и органических веществ по растению обеспечивала появившаяся проводящая ткань.

Позже от псилофитов произошли папоротникообразные и мхи. Эти растения имеют более сложное строение, у них есть стебли и листья, они лучше приспособлены к обитанию на суше. Однако, также как у псилофитов, у них сохранялась зависимость от воды. При половом размножении, чтобы сперматозоид достиг яйцеклетки, им нужна вода. Поэтому «уйти» далеко от влажных мест обитания они не могли.

В каменно-угольном периоде (примерно 300 млн. лет назад), когда климат был влажным, папоротникообразные достигли своего рассвета, на планете росло множество их древесных форм. Позднее, отмирая, именно они сформировали залежи каменного угля.

Когда климат на Земле начал становиться более холодным и сухим папоротники начали массово вымирать. Но некоторые их виды перед этим дали начало так называемым семенным папоротникам, которые по-сути были уже голосеменными растениями. В последующей эволюции растений семенные папоротники вымерли, дав перед этим начало другим голосеменным растениям. Позже появились более совершенные голосеменные — хвойные.

Размножение голосеменных уже не зависело от наличия жидкой воды. Опыление происходило с помощью ветра. Вместо сперматозоидов (подвижных форм) у них образовывались спермии (неподвижные формы), которые доставлялись к яйцеклетке специальными образованиями пыльцевого зерна. Кроме того, у голосеменных образовывались не споры, а семена, содержащие запас питательных веществ.

Дальнейшая эволюция растений ознаменовалась появлением покрытосеменных (цветковых). Это произошло около 130 млн. лет назад. А около 60 млн. лет назад они стали господствовать на Земле. По сравнению с голосеменными, цветковые растения лучше приспособлены для жизни на суше. Можно сказать, они стали больше использовать возможности окружающей среды. Так их опыление стало происходить не только с помощью ветра, но и посредством насекомых. Это повысило эффективность опыления. Семена покрытосеменных находятся в плодах, которые обеспечивают более эффективное их распространение. Кроме того, цветковые растения имеют более сложное тканевое строение, например, в проводящей системе.

В настоящее время покрытосеменные являются наиболее многочисленной по количеству видов группой растений.

Источник

Эволюция растений

Эволюция растений

Эволюция царства растений началась с архейской эры (около 3500 млн. лет назад). В этот период на Земле отмечено появление синезеленых водорослей. Эти водоросли принадлежат к группе цианобактерий, поскольку в их клетках отсутствует оформленные ядра|ядра. Таким образом, их можно отнести к прокариотам (доядерным организмам). Среди синезеленых водорослей были одно- и многоклеточные организмы, имеющие возможность осуществлять фотосинтез. Благодаря процессу фотосинтеза, в атмосферу нашей планеты начал|начал поступать кислород, необходимый для жизнедеятельности аэробов.

Позднее|Позднее в протерозойской эре (около 2600 млн. лет назад) Землёй завладели красные и зелёные водоросли. Их господство распространилось и на палеозойскую эру (примерно 570 млн. лет назад). Только в поздний палеозой (силурийский период) отмечена жизнедеятельность на планете древнейших высших растений – риниофитов, или псилофитов. У этих растений были побеги|побеги, но отсутствовали корни и листья. Размножение риниофитов происходило спорами. Они обитали на суше или частично в воде.В существовании нашей планеты новая эра началась с появления высших, или наземных растений. Около 400- 360 млн. лет назад в девонском периоде палеозойской эры на фоне преобладания на Земле риниофитов и водорослей появились первые папоротникообразные (папоротники, хвощи, плауны) и моховидные растения. Они относятся к высшим споровым растениям. Благодаря распространению растений на суше, появились и новые наземные виды животных. Сочетанное изменение в ходе эволюции форм растений и животных обусловило огромнейшее разнообразие жизни на Земле. Облик планеты изменился коренным|корённым образом. Прикреплённый образ жизни растения на суше привёл к появлению расчленения растения на корень, стебель и лист, а также к возникновению опорных тканей и сосудистой проводящей системы. Самые первые наземные растения были маленьких размеров. Они поглощали воду посредством ризоидов, как сохранившиеся по сей день на Земле мхи. В цикле их развития преобладало гаплоидное поколение (гаметофит). Постепенно появлялись более крупные формы растений — папоротникообразные, у которых образовались сложные специализированные органы|органы – корни с корневыми волосками. В цикле развития этих растений на первый план выступает диплоидная фаза — спорофит, являющийся непосредственно самим растением, тогда как гаметофит – это заросток, который выглядит как клубенёк у хвощей и плаунов и как небольшая пластинка в форме сердца|сердца у папоротников. Так осуществлялся постепенный переход от гаплоидного поколения к более совершенному|совершённому — диплоидному. В палеозойскую эру папоротникообразные были громадными растениями, господствовавшими на суше. Однако для их размножения была необходима вода, что ограничивало территорию их существования местностями с повышенной влажностью.

В каменноугольном периоде, который длился с 360 до 280 млн. лет назад, доказано появление на нашей планете семенных папоротников, которые в дальнейшем стали родоначальниками всех голосеменных растений. В это время полностью исчезают риниофиты из-за невозможности конкурировать с более развитыми|развитыми|развитыми растениями. А господствовашие тогда огромнейшие древовидные папоротникообразные после отмирания образовали залежи каменного угля.

В следующем пермском периоде палеозойской эры на Земле появились древние голосеменные растения. Древовидные папоротникообразные постепенно вымирают, а им на смену приходят семенные и травянистые папоротники, завладевая сушей. Особенностью голосеменных растений является то, что размножение их осуществляется семенами|семёнами, не имеющими защиты в виде стенок плода, так как цветков и плодов эти растения не образуют. Половое размножение этих растений осуществлялось независимо от капельно|капельно-водной среды|среды. А их появление в ходе эволюционных метаморфоз было обусловлено перепадами влажности и температуры и изменением рельефа Земли|Земли вследствие поднятия суши|суши, то есть появления горных массивов.

Мезозойская эра наступила около 240 млн. лет назад. В триасовом периоде мезозоя появились современные голосеменные, а в юрском периоде зародились первые покрытосеменные растения. Но господствующие позиции на планете сохранились за голосеменными растениями. Это эра вымирания древних папоротникообразных, не выдерживающих естественного отбора. В процессе появления покрытосеменных растений произошла череда ароморфозов. Во-первых, сформировался цветок – трансформированный побег, приспособленный для образования спор и гамет. Опыление, оплодотворение и образование зародыша и плода происходило непосредственно в цветке. Во-вторых, для лучшей защиты и распространения семена|семёна покрытосеменных растений были окружены околоплодником. Для этих растений характерно половое размножение. К покрытосеменным относятся травянистые растения, деревья и кустарники. Разнообразные видоизменения вегетативных органов|органов (корня, стебля, листа) отмечаются у разных видов растений. Эволюционные изменения покрытосеменных растений происходили за относительно короткий срок, поэтому для них свойственна высокая эволюционная пластичность. Огромное значение в протекании эволюционных преобразований сыграли насекомые-опылители. Покрытосеменные растения более продуктивно осваивают окружающую среду|среду и завоёвывают новые территории, благодаря своим особенностям строения и способности формировать сложные многоярусные сообщества.

В кайнозойской эре, наступившей приблизительно 70 млн. лет назад, на нашей планете стали господствовать существующие и в настоящее время покрытосеменные и голосеменные растения, тогда как высшие споровые растения регрессировали.

Сейчас на Земле произрастают более 350 видов растений, среди них встречаются цветковые, мохообразные растения, папоротники, водоросли.

Эволюция растений

Здравствуйте друзья! Сегодня хотелось бы поговорить о доисторических растениях, о том как они эволюционировали в современные растения.

В растительном мире сегодня преобладают цветковые растения, но плауны и папоротники покрывали Землю в доисторическое время.

Эволюция растений.

Более 400 000 видов флоры известны сегодня, и все они произошли от нескольких древних морских растений. Виды, исчезнувшие с лица|лица Земли|Земли, не входят в это число, поскольку к меняющимся условиям на Земле адаптироваться они не смогли, или не выдержали конкуренцию со стороны вновь появившихся растений, которые лучше были приспособлены к новой среде обитания.

Палеоботаники установили распределение растительного покрова|покрова по поверхности Земли|Земли в разные геологические периоды, а также закономерности его смены. В том, что у растений нет твёрдого скелета, который легко превращается в окаменелость, заключается сложность исследований.

К счастью, иногда можно обнаружить ранние формы флоры в древних илистых отложениях, а в горных породах были найдены некоторые останки растений, их возраст составляет около 3,1 млрд. лет.

О том, что жизнь на планете должна была начаться с появления растениеподобных организмов, ставших важным звеном в пищевой цепи животных в дальнейшем, свидетельствуют окаменелости.

Но намного значимее роль растений в эволюционной истории Земли|Земли, так как они фактически преобразовали атмосферу нашей планеты и сделали её пригодной для существования животного мира.

Вероятно, в условиях изначального содержания огромного количества углекислоты|углекислоты в атмосфере, животные не смогли бы дышать. Углекислый газ в кислород растения преобразуют в процессе фотосинтеза, насыщая им атмосферу.

Основой пищевой цепи послужила способность растений использовать солнечный свет для производства сложных органических веществ. Эволюцию плотоядных и травоядных животных обеспечили растения.

Эволюция, однако, крайне медленный процесс, и естественный отбор благоприятствует особям, приспосабливающимся к изменениям среды|среды обитания, а не просто к изменениям как таковым.

Без воды|воды не могли обходиться древнейшие виды растительного мира, так как структуры необходимые для жизни на суше, у них отсутствовали.

Первые вышедшие растения из воды, вероятно, обосновались в болотах, где их нижняя часть могла постоянно находиться под водой. Скорее всего, первые истинно наземные растения оставались влаголюбивыми и росли возле воды|воды.

Влажная среда для размножения по-прежнему, была необходима печёночникам, мхам и папоротникам, которые развивались как растения с давних времён.

Геологическую колонку с эрами, периодами, эпохами и их длительностью можно посмотреть здесь.

Предшественники цветковых растений – голосеменные, среди них хвойные деревья – нуждались в ветре для рассеивания семян и опыления, поскольку тогда ещё не было способных это делать насекомых.

Одновременно с насекомыми и животными развивались преобладающие сегодня цветковые (покрытосеменные) растения, поэтому часто опыляются ими.

Простейшие водоросли были древнейшими из известных растений.

Это одноклеточные организмы, всё|все функции которых выполняла единственная лишённая ядра|ядра клетка. Крайне примитивными были эти сине–зелёные водоросли, и только около 1,5 млрд. лет назад появились имеющие клеточное ядро водоросли.

Многоклеточные организмы возникли со временем. Возможно, они сходные с морскими водорослями и имеющие в разных частях растения органы|органы размножения.

Около 590 млн. лет назад, в кембрийский период, прочно обосновались на Земле многие формы жизни. К этому периоду относятся более 900 видов – и это те растения, которые сохранились и были обнаружены сотни миллионов лет спустя.

Источник



Эволюция растений

Эволюция растений привела к значительному усложнению форм жизни на Земле, от ранних водорослей, через мохообразные, плауновидные, папоротники к голосеменным и цветковым растениям. Несмотря на то, что более ранние группы растений продолжают существовать и в позднейшие эпохи, считается, что новые группы, как правило, более «успешны» в эволюционном плане.

Согласно современным представлениям, первые сине-зеленые водоросли зародились ещё в архее [1] (не менее 2,5 млрд. лет назад) [2] . На суше первые растения появились, по некоторым данным, уже в ордовикский период, примерно 450 млн. лет назад [3] [4] . Ключевым моментом в эволюции высших растений стало возникновение трахеидов — особых клеток, обеспечивающих транспорт воды и других питательных веществ внутри растительных тканей. Наличие трахеидов стало отличительным признаком сосудистых растений, первые из которых появились ещё в силуре. Дальнейшее развитие сосудистых растений связано с распространением в девоне риниофитов, плауновидных и других представителей отдела, о чем красноречиво свидетельствуют ископаемые останки из райниевых черт [5] .

Содержание

Колонизация суши

Эволюция жизненных циклов

Эволюция строения растений

Ксилема

Листья

Факторы, влияющие на строение листа

Древесные формы

Корни

Арбускулы

Семена

Цветок

Факторы, влияющие на разнообразие растений

Период цветения

Теории эволюции цветковых

Эволюция путём фотосинтеза

Роль вторичного метаболизма в эволюции растений

Механизмы и факторы эволюции форм растений

См. также

Растения

Общая эволюция

Дисциплины, изучающие эволюцию и распространение растений

Источники

  • Богоявленская О.В.Органический мир и палеография палеозоя. — Екатеринбург: Изд-во УГГГА, 2002. — 43 с.
  • Эволюция биосферы и биоразнообразия (Сборник, посвященный 70-летию директора Палеонтологического института Российской академии наук, члена-корреспондента РАН, профессораАлексея Юрьевича Розанова) / Рожнов, Сергей Владимирович. — М .: КМК, 2006. — 602 с. — ISBN 5-87317-299-4
  • Barton, Nicholas H.   (англ.) русск. et al. The Origin and Diversification of Life // Evolution. — New York: CSHL Press, 2007. — 833 с. — ISBN 978-087969684-9   (англ.)
  • Benton, Michael   (англ.) русск.The History of Life: A Very Short Introduction. — Oxford University Press, 2008. — 184 с. — ISBN 978-0-19-922632-0   (англ.)

Ссылки

  • Kenrick, Paul.Fishing for the first plants. Nature (18 September 2003). Архивировано из первоисточника 30 сентября 2012.Проверено 30 сентября 2012.   (англ.)

Примечания

  1. Богоявленская О.В. Органический мир… — С. 5
  2. Эволюция биосферы… — С. 249
  3. Benton, Michael. The History… — С. 71—72
  4. Kenrick, Paul. Fishing… — С. 248—249
  5. Barton, Nicholas H. Evolution… — С. 273—274
  • Палеоботаника
  • Растения
  • Эволюционная биология

Wikimedia Foundation . 2010 .

Смотреть что такое «Эволюция растений» в других словарях:

Эволюция проводящих клеток и тканей — Возникновение покровной ткани, или эпидермы, было важным, но не единственным требованием при переходе растений к обитанию в наземных условиях. Как было показано выше, организация эпидермы с самого начала должна была отвечать двум прямо… … Биологическая энциклопедия

Эволюция проводящей системы — Из вводной главы предыдущего тома мы уже знаем, что проводящая система цветковых растений достигла наиболее высокого уровня эволюционного развития. Проводящая система у цветковых растений оказалась значительно более совершенной, чем у… … Биологическая энциклопедия

Эволюция жизненного цикла высших растений — Свой жизненный цикл чередование спорофита и гаметофита высшие растения унаследовали, вероятно, от своих водорослевых предков. Как известно, у водорослей наблюдаются самые различные взаимоотношения диплоидной и гаплоидной фаз жизненного… … Биологическая энциклопедия

Эволюция ветвления — Изучение как наиболее древних вымерших высших растений, так и сохранившихся до наших дней примитивных форм приводит к выводу, что исходной формой ветвления спорофита было вильчатое, или дихотомическое (рис. 3). Конечные веточки как… … Биологическая энциклопедия

Эволюция оболочки пыльцевых зерен — В настоящее время накопилось достаточно данных, позволяющих нарисовать общую картину эволюции оболочки пыльцевых зерен цветковых растений. Прежде всего совершенно очевидно, что наиболее примитивные типы спородермы цветковых растений имеют … Биологическая энциклопедия

Эволюция и филогения диатомовых водорослей — Диатомовые водоросли сравнительно молодая группа, но ее эволюция изучена полнее многих других, так как кремнеземные панцири или створки диатомей способны сохраняться в ископаемом состоянии очень длительное время. Сейчас известны… … Биологическая энциклопедия

ЭВОЛЮЦИЯ — (лат., от evolvere развертывать). 1) военные передвижения армии или флота. 2) прогрессивное развитие форм. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЭВОЛЮЦИЯ 1) постепенное разбитие, законы которого исключают … Словарь иностранных слов русского языка

ЭВОЛЮЦИЯ — ЭВОЛЮЦИЯ, эволюции, жен. (лат. evolutio). 1. только ед. Развитие, процесс изменения кого чего нибудь от одного состояния к другому. Эволюция искусства. Эволюция нравов. Творческий путь Пушкина служит примером поразительно быстрой эволюции. Теория … Толковый словарь Ушакова

ЭВОЛЮЦИЯ ЖИЗНИ — жизнь представляет особую форму движения материи, возникая как ее новое качество в процессе развития и являясь способом существования белковых веществ вместе с нуклеиновыми кислотами; жизнь возможна лишь при наличии воды в жидкой фазе (все живые… … Геологическая энциклопедия

Эволюция — Эта статья  о биологической эволюции. Другие значения термина в заглавии статьи см. на Эволюция (значения). Фи … Википедия

Источник

Этапы эволюции растительного мира

В результате доисторических событий, таких как пермское и мел-палеогеновое массовые вымирания, многие семейства растений и некоторые предки существующих видов вымерли до начала записанной истории.

Общая тенденция диверсификации флоры Земли включает в себя четыре основные группы растений, которые господствуют на планете, начиная со среднего силурийского периода и до настоящего времени:

  • Первая основная группа, представляющая наземную растительность, включала бессемянные сосудистые растения, представленные классами риниевых (Rhyniophyta), зостерофилловых (Zosterophyllopsida).

  • Вторая основная группа, появившаяся в позднедевонском периоде, состояла из папоротников.
  • Третья группа, семенные растения, появились как минимум 380 миллионов лет назад. Она включала в себя голосеменные растения (Gymnospermae), которые доминировали в наземной флоре в течение большей части мезозойской эры до 100 миллионов лет назад.
  • Последняя четвертая группа, покрытосеменные растения, появилась около 130 миллионов лет назад. В летописи окаменелостей также показано, что эта группа растений была в изобилии в большинстве районов мира в пределах от 30 миллионов до 40 миллионов лет назад. Таким образом, покрытосеменные доминировали над растительностью Земли в течение почти 100 миллионов лет.

Палеозойская эра

Протерозойский и архейский эоны предшествуют появлению наземной флоры. Бессемянные, сосудистые, наземные растения появились в середине силурийского периода (437-407 миллионов лет) и были представлены риниофитами и, возможно, плауновидными (включая ликоподиумы). Из примитивных риниофитов и плауновых наземная растительность быстро эволюционировала в течение девонского периода (407-360 миллионов лет назад).

Предки настоящих папоротников, возможно развивались в середине девона. Во время позднего девонского периода появились хвощёвые и голосеменные. К концу периода уже существовали все основные отделы сосудистых растений, кроме покрытосеменных.

Развитие особенностей сосудистых растений, во время девона, позволили увеличить географическое разнообразие флоры. Одной из них было возникновение сплющенных листьев, что повысило эффективность фотосинтеза. Другая — появление вторичной древесины, позволяющая растениям значительно увеличиваться по форме и размерам, что привело к появлению деревьяев и, вероятно, к лесов. Постепенным процессом было репродуктивное развитие семени; самое раннее обнаружено в верхнедевонских отложениях.

Предки хвойных и саговниковидных появились в каменноугольном периоде (360-287 миллионов лет назад). Во время раннего карбона в высоких и средних широтах растительность демонстрирует доминирование ликоподиумов и Progymnospermophyta.

В более низких широтах Северной Америки и Европы обнаруживается большое разнообразие ликоподиумов и Progymnospermophyta, а также другой растительности. Встречаются семенные папоротники (включая calamopityales), наряду с настоящими папоротниками и хвощами (Archaeocalamites).

Поздняя карбоновая растительность в высоких широтах сильно пострадала от начала пермско-карбонового ледникового периода. В северных средних широтах летопись окаменелостей показывает доминирование хвощей и примитивных семенных папоротников (птеридоспермов) над немногими другими растениями.

В северных низких широтах наземные массивы Северной Америки, Европы и Китая были охвачены неглубокими морями или болотами и, поскольку они близки к экватору, то испытывали тропические и субтропические климатические условия.

В это время появились первые тропические леса, известные как каменноугольные леса. Огромное количество торфа было заложено в результате благоприятных условий круглогодичного роста и адаптации гигантских ликоподиумов к тропическим средам водно-болотных угодий.

В более сухих районах, окружающих низменности, в большом изобилии существовали леса хвощей, семенные папоротники, кордаиты и другие папоротники.

Пермский период (287-250 миллионов лет назад) указывает на значительный переход хвойных, саговниковидных, глоссоптерис, гигантоптерид и пельтасперм из бедных окаменелостей в карбоне в значительную обильную растительность. Другие растения, такие как древесные папоротники и гигантские ликоподиумы, присутствовали в перми, но не в изобилии.

В результате массового пермского вымирания исчезли тропические болотные леса, а вместе с ними и ликоподиумы; кордаиты и глоссоптерисы вымерли на более высоких широтах. Около 96 % всех видов растений и животных исчезли с лица нашей планеты в это время.

Мезозойская эра

В начале триасового периода (248-208 миллионов лет назад) скудная летопись окаменелостей указывает на сокращения флоры Земли. С середины до позднего триаса современные семейства папоротников, хвойных деревьев и ныне вымершей группы растений, беннеттитовых, обитали в большинстве наземных экосистем. После массового вымирания беннеттиты переместились в свободные экологические ниши.

Поздняя триасовая флора в экваториальных широтах представлена ​​широким диапазоном папоротников, хвощей, саговников, беннеттитов, гинкго и хвойных деревьев. Комбинации растений в небольших широтах сходные, но не богатые видами. Это отсутствие вариаций растений в низких и средних широтах отражает глобальный безморозный климат.

В юрский период (208-144 миллионов лет назад) появилась наземная растительность, похожая на современную флору, и потомками папоротников этого геологического отрезка времени можно считать современные семейства, такие как Dipteridaceae, Matoniaceae, Gleicheniaceae, и Cyatheaceae.

К хвойным этого возраста также могут относится современные семейства: подокарповых, араукариевых, сосновых и тисовых. Эти хвойные породы, во время мезозоя, создали значительные залежи такого полезного ископаемого, как уголь.

Во время раннего и среднего юрского периода, в экваториальных широтах западной части Северной Америки, Европы, Средней Азии и Дальнего Востока, произрастала разнообразная растительность. Она включала: хвощи, саговники, беннеттиты, гинкго, папоротники и хвойные деревья.

Теплые, влажные условия также существовали в северных средних широтах (Сибирь и северо-запад Канады), поддерживая гинкговые леса. Пустыни встречались в центральной и восточной частях Северной Америки и Северной Африки, а наличие беннеттитов, саговников, хейролепидиевых и хвойных деревьев свидетельствовали о приспособленности растений к засушливым условиям.

Южные широты имели сходную растительность с экваториальными, но из-за более сухих условий хвойные породы были обильными, а гинкговые — дефицитными. Южная флора распространилась на очень высокие широты, включая Антарктиду, из-за отсутствия полярного льда.

В меловом периоде (144-66,4 миллионов лет назад) в Южной Америке, Центральной и Северной Африке, и Центральной Азии существовали сухие, полупустынные природные условия. Таким образом, в наземной растительности преобладали хвойные породы хейролипидиевых и матониевые папоротники.

Северные средние широты Европы и Северной Америки имели более разнообразную растительность, состоящую из беннеттитовых, саговниковых, папоротников и хвойных деревьев, а в южных средних широтах преобладали беннеттиты.

В позднем меловом периоде произошли значительные изменения в растительности Земли, с появлением и распространением цветущих семенных растений, покрытосеменных. Присутствие покрытосеменных означало конец типичной мезозойской флоры с преобладанием голосеменных растений и определенное снижение беннеттитовых, гинкговых и саговниковых.

Во время позднего мела в Южной Америке, Центральной Африке и Индии преобладали засушливые условия, в результате чего среди тропической растительности доминировали пальмы. На средние южные широты также влияли пустыни, а растения, окаймлявшие эти районы, включали: хвощи, папоротники, хвойные и покрытосеменные, в частности, нотофагус (южный бук).

Высокоширотные районы были лишены полярного льда; из-за более теплых условий климата, покрытосеменные смогли процветать. Самая разнообразная флора была обнаружена в Северной Америке, где присутствовали вечнозеленые растения, покрытосеменные и хвойные деревья, особенно красное дерево, секвойя.

Мел-палеогеновое массовое вымирание (К-Т вымирание) произошло около 66,4 миллионов лет назад. Это событие, которое внезапно вызвало глобальные климатические изменения и исчезновение многих видов животных, особенно динозавров.

Наибольший «шок» для наземной растительности произошел в средних широтах Северной Америки. Показатели пыльцы и спор чуть выше границы К-Т в летописи окаменелостей показывают преобладание папоротников и вечнозеленых растений. Последующая колонизация растений в Северной Америке демонстрирует преобладание лиственных растений.

Кайнозойская эра

Увеличение осадков в начале палеогена-неогена (66,4-1,8 миллионов лет назад) способствовало широкомасштабному развитию дождевых лесов в южных районах.

Примечательным в этот период была полярная лесная флора Аркто, обнаруженная на северо-западе Канады. Мягкое, влажное лето чередовалось с непрерывной зимней тьмой с температурой от 0 до 25° C.

Эти климатические условия поддерживали лиственную растительность, которая включала платановых ореховых, берёзовых, луносемянниковых, вязовых, буковых, магнолиевых; и голосеменные растения, такие как таксодиевые, кипарисовые, сосновые и гинкговые. Эта флора распространилась по Северной Америке и Европе.

Примерно одиннадцать миллионов лет назад, во время миоценовой эпохи, произошли заметные изменения в растительности с появлением трав и их последующим распространением на травянистые равнины и прерии. Появление этой широко распространенной флоры способствовало развитию и эволюции растительноядных млекопитающих.

Четвертичный период (1,8 миллиона лет назад и к настоящему времени) начался с континентального оледенения в северо-западной Европе, Сибири и Северной Америке. Это оледенение затронуло наземную растительность, при этом представители флоры мигрировали на север и юг в ответ на ледниковые и межледниковые колебания. В межледниковые периоды были распространены клёновые, берёзовые и маслиновые.

Окончательные миграции видов растений в конце последнего ледникового периода (около одиннадцати тысяч лет назад) сформировали современное географическое распределение наземной флоры. Некоторые районы, такие как горные склоны или острова, имеют необычное видовое распределение в результате их изоляции от глобальной миграции растений.

Источник

Adblock
detector