Любопытные особенности каротиноиды

Что такое фотосинтез и почему он так важен для нашей планеты

Фотосинтез — один из самых важных биологических процессов на Земле. Благодаря фотосинтезу живые организмы получают кислород, необходимый для дыхания, а сами растения создают полезные органические вещества для своей жизнедеятельности. В этой статье мы поговорим о том, что обозначает фотосинтез, как он происходит и что образуется в процессе фотосинтеза.

Что такое фотосинтез

Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.

Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл.

Строение хлоропластов

Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты. Хлоропласты — это особые пластиды растительных клеток, в которых происходит фотосинтез. Основные элементы структурной организации хлоропластов высших растений представлены на рис.1.

Хлоропласт — это двумембранный органоид. Внешняя мембрана проницаема для большинства органических и неорганических соединений. Она содержит специальные транспортные белки, благодаря которым нужные для работы хлоропласта пептиды и другие вещества попадают в него из цитоплазмы. Внутренняя мембрана обладает избирательной проницаемостью и способна контролировать, какие именно вещества попадут во внутреннее пространство хлоропласта.

Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.

Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.

Пигменты хлоропластов

Что происходит во время фотосинтеза? На молекулярном уровне фотосинтез обеспечивают особые вещества — пигменты, благодаря которым энергия солнечного света становится доступной для биологических систем. У фотосинтезирующих организмов можно выделить три основные группы пигментов:

  • Хлорофиллы:
  • хлорофилл а — у большинства фотосинтезирующих организмов,
  • хлорофилл b — у высших растений и зелёных водорослей,
  • хлорофилл c — у бурых водорослей,
  • хлорофилл d — у некоторых красных водорослей.
  • Каротиноиды:
  • каротины — у всех фотосинтезирующих организмов, кроме прокариот;
  • ксантофиллы — у всех фотосинтезирующих организмов, кроме прокариот
  • Фикобилины — красные и синие пигменты красных водорослей.

В хлоропластах пигменты ассоциированы с белками с помощью ионных, водородных и других типов связей. Не стоит забывать, что у растений есть множество других пигментов, находящихся не в хлоропластах и не принимающих участие в фотосинтезе — например, антоцианы.

Хлорофилл

Хлорофиллы выполняют функции поглощения, преобразования и транспорта энергии света. Лучше всего хлорофиллы поглощают свет в синей (430—460 нм) и красной (650—700 нм) областях спектра. Зелёную область спектра хлорофиллы эффективно отражают, что придаёт растению зелёный цвет.

Интересно, что строение молекулы хлорофилла схоже со строением гемоглобина, но центром молекулы хлорофилла является ион магния, а не железа.

Основными хлорофиллами высших растений являются хлорофилл a и хлорофилл b, они входят в состав реакционных центров фотосистем и светособирающих комплексов мембран тилакоидов хлоропластов. Светособирающие комплексы улавливают кванты света и передают энергию к фотосистемам I и II. Фотосистемы — это пигмент-белковые комплексы, играющие ключевую роль в световой фазе фотосинтеза.

Каротиноиды

Каротиноиды — это жёлтые, оранжевые или красные пигменты. В зелёных листьях каротиноиды обычно незаметны из-за наличия в листьях хлорофилла. При разрушении хлорофилла осенью именно каротиноиды придают листьям характерную жёлто-оранжевую окраску.

  • Антенная — входят в состав светособирающих комплексов, улавливают энергию света и передают её на хлорофиллы. Каротиноиды играют роль дополнительных светособирающих пигментов в той части солнечного спектра (450—570 нм), где хлорофиллы малоэффективны. Особенно это важно для водных экосистем, в которых волны оптимальной для хлорофиллов длины быстро исчезают с глубиной.
  • Защитная функция (антиоксидантная) — обезвреживание агрессивных кислородных соединений (активных форм кислорода) и избытка хлорофилла в возбуждённом состоянии при слишком ярком освещении.

Каротиноиды химически представляют собой 40-углеродную цепь с двумя углеродными кольцами по краям цепи. В строении ксантофиллов, в отличие от каротинов, присутствуют спиртовые, эфирные или альдегидные группы.

Учите биологию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду BIO72020 вы получите бесплатный доступ к курсу биологии 7 класса, в котором изучается тема фотосинтеза.

Что происходит в процессе фотосинтеза

Как уже было сказано ранее, в ходе фотосинтеза в хлоропластах под действием солнечного света образуются органические вещества.

Процесс фотосинтеза можно разделить на две фазы:

В ходе световой фазы фотосинтеза образуется энергия в виде АТФ и универсальный донор атома водорода — восстановитель НАДФН (НАДФ·Н2). Эти вещества необходимы для протекания темновой фазы. Также образуется побочный продукт — кислород. Световая фаза может проходить только на мембранах тилакоидов и на свету.

Благодаря сложному биохимическому процессу — циклу Кальвина — в темновую фазу фотосинтеза образуются органические вещества (сахара). Темновая фаза проходит в строме хлоропластов и на свету, и в темноте. Темновые ферментативные процессы протекают медленнее, чем световые, поэтому при очень ярком освещении скорость протекания фотосинтеза будет полностью определяться скоростью темновой фазы. Схемы процессов фотосинтеза представлены на рис.2. Подробное описание процессов смотри далее.

Этапы фотосинтеза

Световая фаза фотосинтеза

Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:

  1. Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II.
  2. Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
  3. Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.

Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I, отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.

На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.

Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ.

Темновая фаза фотосинтеза

Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.

В нём можно выделить три этапа:

  1. Фаза карбоксилирования (введение CO2 в цикл).
  2. Фаза восстановления (используются АТФ и НАДФН, полученные в световую фазу).
  3. Фаза регенерации (превращения сахаров).

В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.

Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле.

Темновая фаза фотосинтеза

Значение фотосинтеза

В процессе фотосинтеза энергия света заключается в энергию химических связей органических веществ. Поэтому фотосинтез служит первичным источником почти всей энергии, используемой живыми организмами в процессе жизнедеятельности. Практически все живые организмы, за исключением хемосинтетиков, так или иначе пользуются теми продуктами, что выделяются при фотосинтезе.

За счёт фотосинтеза сформировалась и поддерживается пригодная для дыхания атмосфера с высоким содержанием кислорода.

Фиксация углекислого газа в ходе фотосинтеза служит главным местом входа неорганического углерода в биогеохимический цикл. Также ассимиляция CO2 препятствует перегреву Земли, предотвращая парниковый эффект.

Заключение

Каждый год на нашей планете благодаря фотосинтезу производится около 200 миллиардов тонн кислорода, из которого образуется озоновый слой, защищающий от ультрафиолетовой радиации. Фотосинтез помогает поддерживать состав атмосферы и препятствует увеличению количества углекислого газа. Без растений и кислорода, который они выделяют в процессе фотосинтеза, жизнь на нашей планете была бы просто невозможна.

Источник



Биологические пигменты

Биологические пигменты (биохромы) — окрашенные вещества, входящие в состав тканей организмов. Цвет пигментов определяется наличием в их молекулах хромофорных групп, избирательно поглощающих свет в определённой части видимого спектра солнечного света [1] . Пигментная система живых существ — звено, связывающее световые условия окружающей среды и обмен веществ организма. Биологические пигменты играют важную роль в жизнедеятельности живых существ.

Содержание

Группы биологических пигментов

Биологические пигменты подразделяются на несколько классов в зависимости от своего строения.

Каротиноиды

Каротиноиды — наиболее распространённый класс биологических пигментов. Они обнаружены у большинства живых существ, в том числе у всех без исключений растений, многих микроорганизмов. Каротиноиды обуславливают окраску многих животных, особенно насекомых, птиц и рыб. Каротиноиды и их производные, помимо прочего, являются основой зрительных пигментов, отвечающих за восприятие света и цвета у животных [2] .

К каротиноидам относятся такие пигменты, как каротин, гематохром, ксантофилл, ликопин, лютеин, родопсин (зрительный пурпур) и другие.

Хиноны

Хиноны — химические соединения, производные моноциклических или полициклических ароматических углеводородов, в составе которых присутствует ненасыщеный циклический дикетон. Их окраска варьирует от бледно-жёлтой до оранжевой, красной, пурпурной, коричневой и почти чёрной. Обнаружены у многих грибов, лишайников и в некоторых группах беспозвоночных. Широко используемый краситель ализарин относится к группе хинонов [3] .

Флавоноиды

Флавоноиды — O-гетероциклические фенольные соединения. В природе синтезируются почти исключительно высшими растениями. В их число входят антоцианы, обуславливающие наиболее яркие цвета растений — красные, пурпурные, синие части цветов и плодов; флавоны, флавонолы, ауроны, халконы определяют жёлтую и оранжевую окраску плодов и листьев. К группе флавоноидов относятся также природные антиоксиданты катехины [4] .

Пигменты на основе порфирина

В эту группу входят биологические пигменты, в составе которых присутствует порфириновый комплекс. Гем, один из видов порфиринов, входит в качестве простетической группы в состав таких соединений, как гемоглобин, билирубин, цитохром c, цитохром P450 и другие. К этой группе относятся также растительные пигменты — хлорофилл, феофитин и т. п. Как правило, пигменты этого класса участвуют в фотохимических процессах, а также являются ферментами, задействованными в обмене веществ. Их роль как собственно красителей второстепенна [5] .

Другие

Меланин — один из самых распространённых пигментов у животных, обуславливающий их тёмную окраску. Также встречается у растений и микроорганизмов. У позвоночных синтезируется в особых клетках — меланоцитах [6] .

Люциферины — группа светоизлучающих биологических пигментов, встречаются у организмов, способных к биолюминесценции. Представляют собой небольшие молекулы, служащие субстратом для соответствующих ферментов люцифераз, осуществляющих их окисление [7] .

Биологическая роль

Природные пигменты выполняют множество функций. Они определяют окраску организмов, важную для их приспособления к внешней среде. Окраска отдельных частей растений служит для привлечения насекомых-опылителей и птиц, распространяющих семена, окраска тела у животных способствует защите от врагов, маскирует их при выслеживании добычи или предупреждает врагов о ядовитости. Также эти пигменты могут осуществлять защиту организма от ультрафиолетового излучения солнца. Многие природные пигменты принимают участие в фотохимических процессах, в частности, хлорофилл, бактериохлорофилл, бактериородопсин являются фотосинтезирующими ферментами, родопсин животных задействован в зрительном процессе. Дыхательные пигменты (гемоглобин, гемэритрин, гемоцианин, цитохромы, дыхательные хромогены и др.) участвуют в переносе кислорода к тканям и тканевом дыхании.

Биологические пигменты, как правило, находятся в различных структурах клетки, реже — в свободном состоянии в жидкостях организма. Так, хлорофилл расположен в хлоропластах, каротиноиды — в хромопластах и хлоропластах, гемоглобин, как правило, в эритроцитах, меланин — в меланоцитах.

Использование

Ряд природных пигментов нашёл применение как красители в промышленности. В частности, широко применяются краски на основе ализарина, ранее применялись такие природные красители, как индиго, кармин, шафран и другие.

Примечания

  1. Бриттон Г.Биохимия природных пигментов. — Москва: Мир, 1986. — С. 20, 21. — 422 с. — 3050 экз.
  2. Бриттон Г.Биохимия природных пигментов. — Москва: Мир, 1986. — С. 34—35. — 422 с. — 3050 экз.
  3. Бриттон Г.Биохимия природных пигментов. — Москва: Мир, 1986. — С. 92—94. — 422 с. — 3050 экз.
  4. Бриттон Г.Биохимия природных пигментов. — Москва: Мир, 1986. — С. 125—130. — 422 с. — 3050 экз.
  5. Бриттон Г.Биохимия природных пигментов. — Москва: Мир, 1986. — С. 156—159. — 422 с. — 3050 экз.
  6. Бриттон Г.Биохимия природных пигментов. — Москва: Мир, 1986. — С. 259. — 422 с. — 3050 экз.
  7. John Lee Basic Bioluminescence  (англ.) . — Department of Biochemistry and Molecular Biology, University of Georgia, Athens, 2008.

Литература

  • Бриттон Г.Биохимия природных пигментов. — Москва: Мир, 1986. — 422 с. — 3050 экз.
  • Всеволодов Н. Н. Биопигменты — фоторегистраторы: фотоматериал на бактериородопсине. — Москва: Наука, 1999. — 224 с. — (Теоретическая и прикладная биофизика). — ISBN 5-02-003930-6
  • Конев С. В., Волотовский И. Д. Ввведение в молекулярную фотобиологию. — Минск: Наука и техника, 1971. — 230 с.

Wikimedia Foundation . 2010 .

Смотреть что такое «Биологические пигменты» в других словарях:

Биологические агенты разрушения древесины — – бактерии, грибы, насекомые, моллюски и ракообразные, повреждающие и разрушающие древесину. [ГОСТ 20022.1 90][СНиП 2.03.11 85] Биологические агенты разрушения древесины – бактерии, грибы, моллюски и ракообразные, повреждающие и разрушающие … Энциклопедия терминов, определений и пояснений строительных материалов

Отходы биологические — – биологические ткани и органы, образующиеся в результате медицинской и ветеринарной оперативной практики, медико биологических экспериментов, гибели скота, других животных и птицы, и другие отходы, получаемые при переработке пищевого и… … Энциклопедия терминов, определений и пояснений строительных материалов

Пигмент — Красящие вещества на прилавке рынка в Гоа, Индия Пигмент (лат. pigmentum  краска)  компонент наполненных композиционных материало … Википедия

Билины — Билины, Биланы или желчные пигменты это биологические пигменты которые образуются во многих организмах как продукт метаболизма некоторых порфиринов. Билин (также называемый билихром) был назван как желчный пигмент млекопитающих, но его также… … Википедия

Чай — У этого термина существуют и другие значения, см. Чай (значения). Ветка чайного куста Чай (кит. 茶  «ча» на … Википедия

Покровная система — Хамелеоны  животные, способные изменять цвет кожного покрова Покровная система (лат. integumentum, от in + tegere  «покрывать»)  … Википедия

Биологическая деструкция — Биологические деструктивные процессы разрушение клеток и тканей в ходе жизнедеятельности организма или после его смерти. Эти изменения широко распространены и встречается как в норме, так и в патологии. Биологическая деструкция, наряду с… … Википедия

ФИЗИОЛОГИЧЕСКИ АКТИВНЫЕ СОЕДИНЕНИЯ, ОБРАЗУЕМЫЕ БАКТЕРИЯМИ — Микроорганизмы в процессе жизнедеятельности вырабатывают разнообразные соединения, имеющие важное значение для жизни ВЫСШИЙ организмов растений, животных и других микроорганизмов. Соединения, являющиеся продуктами… … Биологическая энциклопедия

Азотобактер — ? Азотобактер Azotobacter vinelandii Научная классификация … Википедия

Бактерии — под именем бактерий в науке известны мельчайшие, микроскопической величины организмы, принадлежащие к растительному царству. По своей организации, по своим морфологическим особенностям, Б. ближе всего стоят к так называемым циановым или… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Источник

Где содержится пигмент растений

Ученым известно, какие существуют пигменты растений – зеленые и фиолетовые, желтые и красные. Растительными пигментами назвали органические молекулы, которые есть в тканях, клетках растительного организма – именно благодаря таким включениям они приобретают окраску. В природе чаще прочих встречается хлорофилл, присутствующий в теле всякого высшего растения. Оранжевый, красноватый тон, желтоватые оттенки обеспечены каротиноидами.

А если подробнее?

Пигменты растений находятся в хромо-, хлоропластах. Всего современная наука знает несколько сотен разновидностей соединений этого типа. Внушительный процент всех обнаруженных молекул необходим для фотосинтеза. Как показали испытания, пигменты – это источники ретинола. Розовый и красный оттенки, вариации бурого и голубоватые колеры обеспечены наличием антоцианов. Такие пигменты наблюдаются в растительном клеточном соке. Когда в период похолодания дни становятся короче, пигменты вступают в реакции с иными соединениями, присутствующими в теле растения, отчего меняется окраска прежде зеленых частей. Листва деревьев становится яркой и красочной – той самой осенней, к которой мы привыкли.

пигменты растений хлорофилл

Самый известный

Пожалуй, практически любой школьник средней школы знает про хлорофилл – пигмент растений, необходимый для фотосинтеза. За счет этого соединения представитель растительного мира может поглощать свет солнца. Впрочем, на нашей планете не только растения не могут существовать без хлорофилла. Как показали дальнейшие исследования, это соединение совершенно незаменимо для человечества, так как обеспечивает естественную защиту от раковых процессов. Доказали, что пигмент угнетает канцерогены и гарантирует ДНК защиту от мутаций под влиянием отравляющих соединений.

Хлорофилл – зеленый пигмент растений, химически представляющий собой молекулу. Она локализована в хлоропластах. Именно за счет такой молекулы эти участки окрашены в зеленый. По своей структуре молекула – порфириновое кольцо. За счет этой специфики пигмент напоминает гем, являющийся структурным элементом гемоглобина. Ключевое отличие в центральном атоме: у гема его место занимает железо, для хлорофилла самым значимым является магний. Впервые ученые выявили этот факт в 1930 году. Событие произошло спустя 15 лет после открытия вещества Вильштаттером.

Химия и биология

Сперва ученые установили, что пигмент зеленого цвета в растениях бывает двух разновидностей, которым дали наименования по двум первым буквам латинского алфавита. Разница между разновидностями хоть и невелика, но все же есть, и наиболее ощутима при анализе боковых цепей. Для первой разновидности их роль играет СН3, для второго типа – СНО. Обе формы хлорофилла принадлежат к классу активных фоторецепторов. За их счет растение может поглощать энергетическую составляющую солнечного излучения. Впоследствии выявили еще три типа хлорофилла.

В науке зеленый пигмент растений называется хлорофиллом. Исследуя отличия двух основных разновидностей этой молекулы, присущей высшей растительности, выявили, что длина волн, которые могут поглощаться посредством пигмента, несколько отлична для типов А и В. Фактически, как считают ученые, разновидности эффективно дополняют друг друга, тем самым обеспечивая растению способность максимально качественно поглощать необходимые объемы энергии. В норме обычно первый тип хлорофилла наблюдается во втрое большей концентрации, нежели второй. Суммарно они формируют зеленый растительный пигмент. Три прочих типа нашли только у древних форм растительности.

пигменты высших растений

Особенности молекул

Изучая строение пигментов растений, выявили, что обе разновидности хлорофилла – это молекулы, растворимые жиром. Синтетические разновидности, созданные в лабораториях, растворяются водой, но их всасывание в организме возможно только при наличии жирных соединений. Растениями пигмент используется для получения энергии, обеспечивающей рост. В рационе людей он применяется с целью оздоровления.

Хлорофилл, как и гемоглобин, может нормально функционировать и производить углеводы, если соединен с протеиновыми цепочками. Визуально белок кажется образованием без четкой системы и структуры, но таковая на самом деле правильная, и именно поэтому хлорофилл может стабильно сохранять оптимальное положение.

Особенности активности

Ученые, изучая этот основной пигмент высших растений, обнаружили, что он есть во всякой зелени: в список включены овощи, водоросли, бактерии. Хлорофилл – полностью натуральное соединение. По природе оно обладает качествами протектора и предупреждает трансформацию, мутацию ДНК под влиянием отравляющих соединений. Были организованы специальные исследовательские работы в индийском ботаническом саду при НИИ. Как удалось обнаружить ученым, полученный из свежей зелени хлорофилл может уберечь от отравляющих соединений, патологических бактерий, а также успокаивает активность очагов воспаления.

Хлорофилл недолговечен. Эти молекулы очень хрупкие. Солнечные лучи ведут к гибели пигмента, но зеленый лист в силах генерировать новые и новые молекулы, замещающие отслуживших свое товарищей. В осенний сезон хлорофилл более не вырабатывается, поэтому листва теряет свой цвет. На первый план выходят другие пигменты, до этого скрытые от глаз внешнего наблюдателя.

фотосинтетические пигменты высших растений

Разнообразию нет предела

Разнообразие растительных пигментов, известных современным исследователям, исключительно велико. Из года в год ученые обнаруживают все новые молекулы. Сравнительно недавно проведенные исследования позволили добавить к двум упомянутым выше разновидностям хлорофилла еще три типа: С, С1, Е. Впрочем, самым главным по-прежнему считается тип А. А вот каротиноиды еще более разнообразны. Этот класс пигментов науке известен неплохо – именно за их счет приобретают оттенки корнеплоды моркови, многие овощи, плоды цитрусовых деревья и иные дары растительного мира. Как показали дополнительные испытания, канарейки имеют перья, окрашенные в желтый, именно благодаря каротиноидам. Они же дают цвет яичному желтку. За счет обилия каротиноидов азиатские жители обладают своеобразным оттенком кожи.

Ни человек, ни представители животного мира не располагают такими особенностями биохимии, которые бы позволяли вырабатывать каротиноиды. Эти вещества появляются на базе витамина А. Это доказывают наблюдения, посвященные пигментам растений: если курица с продуктами питания не получала растительность, желтки яиц будут очень слабого оттенка. Если канарейка получала большое количество пищи, обогащенной красными каротиноидами, ее перья приобретут яркий оттенок красного.

Любопытные особенности: каротиноиды

Желтый пигмент растений называется каротином. Ученые установили, что красный оттенок обеспечивают ксантофиллы. Число известных научному сообществу представителей этих двух типов постоянно увеличивается. В 1947 году ученые знали около семи десятков каротиноидов, а к 1970 их насчитывалось уже более двух сотен. В некоторой степени это сродни прогрессу знаний в сфере физики: сперва знали об атомах, затем – электронах и протонах, а впоследствии выявили еще более мелкие частицы, для обозначения которых используют лишь литеры. Можно ли говорить об элементарных частицах? Как показали испытания физиков, пока использовать такой термин рано – наука еще не развита в той степени, чтобы удалось их найти, если такие есть. Сходная ситуация сложилась с пигментами – из года в год открывают все новые виды и типы, а биологи лишь удивляются, не в силах объяснить многоликую природу.

хлорофилл зеленый пигмент растений

О функциях

Ученые, занимающиеся пигментами высших растений, пока не могут объяснить, для чего и почему природа предусмотрела столь большое разнообразие пигментных молекул. Выявлена функциональность некоторых отдельных разновидностей. Доказали, что каротин необходим для обеспечения сохранности хлорофилловых молекул от окисления. Механизм защиты обусловлен особенностями синглетного кислорода, формирующегося при реакции фотосинтеза в качестве дополнительного продукта. Это соединение отличается повышенной агрессивностью.

Еще одна особенность желтого пигмента в клетках растения – его способность увеличивать интервал длины волны, необходимой для процесса фотосинтеза. В настоящий момент такая функция не доказана точно, но проведено немало исследований, позволяющих предположить, что окончательное доказательство гипотезы «не за горами». Лучи, которые зеленый растительный пигмент не может усвоить, поглощаются желтыми пигментными молекулами. Затем энергия направляется хлорофиллу для дальнейшей трансформации.

Пигменты: такие разные

Кроме некоторых разновидностей каротиноидов, желтый цвет имеют пигменты, названные ауронами, халконами. Их химическое строение во многом напоминает флавоны. Такие пигменты в природе встречаются не слишком часто. Их нашли в листочках, соцветиях кислицы и львиного зева, ими обеспечивается окраска кореопсиса. Такие пигменты не переносят табачного дыма. Если окурить растение сигаретой, оно сразу покраснеет. Биологический синтез, протекающий в клетках растений с участием халконов, приводит к генерированию флавонолов, флавонов, ауронов.

И у животных, и у растений есть меланин. Этот пигмент обеспечивает коричневый оттенок волос, именно благодаря ему локоны могут стать черными. Если клетки не содержат меланина, представители животного мира становятся альбиносами. У растений пигмент обнаружен в кожуре красного винограда и у некоторых соцветий в лепестках.

фотосинтетические пигменты растений

Голубые и не только

Голубой оттенок растительность получает благодаря фитохрому. Это протеиновый растительный пигмент, ответственный за контроль цветения. Он регулирует прорастание семечка. Известно, что фитохром может ускорить цветение некоторых представителей растительного мира, у других происходит противоположный процесс замедления. В некоторой степени его можно сравнить с часами, но биологическими. В настоящий момент ученые пока не знают всю специфику механизма действия пигмента. Обнаружили, что строение этой молекулы корректируется временем суток и освещенностью, передавая информацию об уровне света в среде растению.

Синий пигмент в растениях – антоциан. Впрочем, есть несколько разновидностей. Антоцианы не только дают синюю окраску, но и розовую, ими же объясняются красный и сиреневый цвета, иногда – темный, насыщенный фиолетовый. Активная генерация антоцианов в растительных клетках наблюдается, когда понижается температура окружающего пространства, останавливается генерирование хлорофилла. Окраска листвы меняется с зеленой на красную, рыжую, синюю. Благодаря антоциану розы и маки имеют яркие алые цветы. Этот же пигмент объясняет оттенки соцветий герани и васильков. Благодаря голубой разновидности антоциана колокольчики имеют свой нежный цвет. Определенные разновидности этого типа пигментов наблюдаются в винограде, краснокочанной капусте. Антоцианы обеспечивают окрашивание терна, сливы.

Яркие и темные

Известен желтый пигмент, который ученые назвали антохлором. Его обнаружили в кожице лепестков первоцвета. Антохлор найден в примулах, соцветиях баранчика. Им богаты маки желтых сортов и георгины. Этот пигмент дает приятный цвет соцветиям льнянки, лимонным плодам. Он выявлен в некоторых других растениях.

Сравнительно редко в природе встречается антофеин. Это темный пигмент. Благодаря ему появляются специфические пятнышки на венчике некоторых бобовых культур.

Все яркие пигменты задуманы природой для специфической окраски представителей растительного мира. Благодаря такой расцветке растение привлекает птиц, животных. Тем самым обеспечивается распространение семян.

пигменты растений

О клетках и строении

Пытаясь определить, насколько сильно зависит окраска растений от пигментов, как эти молекулы устроены, зачем необходим весь процесс пигментации, ученые обнаружили, что в организме растений присутствуют пластиды. Так назвали небольшие тельца, которые могут иметь окраску, но бывают также бесцветными. Такие тельца есть только и исключительно у представителей растительного мира. Все пластиды разделили на хлоропласты, имеющие зеленый оттенок, хромопласты, окрашенные в разные вариации красного спектра (включая желтый и переходные оттенки), и лейкопласты. Последним не присущи какие-либо оттенки.

В норме растительная клетка содержит одну разновидность пластидов. Эксперименты показали способность этих телец трансформироваться из типа в тип. Хлоропласты обнаружены у всех растительных органов, окрашенных в зеленый. Лейкопласты чаще наблюдаются в частях, скрытых от прямых лучей солнца. Их много в корневищах, они обнаружены в клубнях, ситовидных частицах некоторых типов растений. Хромопласты типичны для лепестков, поспевших плодов. Тилакоидные мембраны обогащены хлорофиллом и каротиноидами. Лейкопласты не содержат пигментных молекул, но могут быть локацией процессов синтеза, скапливания питательных соединений – протеинов, крахмала, изредка жиров.

Реакции и трансформации

Изучая фотосинтетические пигменты высших растений, ученые выявили, что хромопласты окрашены в рыжий, красный благодаря присутствию каротиноидов. Принято думать, хромопласты – заключительный шаг развития пластидов. Вероятно, они появляются при трансформации лейко-, хлоропластов, когда те стареют. Во многом наличие таких молекул определяет цвет листвы по осени, а также яркие, радующие глаз цветы, плоды. Каротиноиды продуцируются водорослями, растительным планктоном, растениями. Их могут генерировать некоторые бактерии, грибы. Каротиноиды ответственны за окраску живых представителей растительного мира. Некоторые животные располагают системами биохимии, за счет которой каротиноиды трансформируются в иные молекулы. Исходное сырье для такой реакции получают с пищей.

Как показали наблюдения за розовыми фламинго, эти птицы собирают и фильтруют спирулину и некоторые другие водоросли для получения желтого пигмента, откуда затем появляются кантаксантин, астаксантин. Именно эти молекулы дают птичьему оперению такой красивый цвет. Многие рыбы и птицы, раки и насекомые имеют яркий цвет благодаря каротиноидам, которые получают с питанием. Бета-каротин трансформируется в некоторые витамины, которые используются на пользу человека – они защищают глаза от влияния ультрафиолета.

пигменты листа растения

Красный и зеленый

Говоря о фотосинтетических пигментах высших растений, следует отметить, что такие могут поглощать кванты световых волн. Отмечается, что это относится лишь к части спектра, видимой для человеческого глаза, то есть для длины волны в границах 400-700 нм. Растительные частицы могут поглощать лишь кванты, располагающие достаточным энергетическим запасом для реакции фотосинтеза. Ответственность за поглощение возложена исключительно на пигменты. Учеными исследованы древнейшие формы жизни растительного мира – бактерии, водоросли. Установлено, что в них есть разные соединения, которые могут акцептировать свет видимого спектра. Некоторые разновидности могут принимать световые волны излучения, не воспринимаемого человеческим глазом – из блока, ближнего к инфракрасному. Кроме хлорофиллов такая функциональность природой возложена на бактериородопсин, бактериохлорофиллы. Исследования показали важность для реакций синтеза фикобилинов, каротиноидов.

Разнообразие фотосинтетических пигментов растений отличается от группы к группе. Многое определяется условиями, в которых форма жизни обитает. У представителей высшего растительного мира разнообразие пигментов меньше, нежели у эволюционно древних разновидностей.

О чем идет речь?

Изучая фотосинтетические пигменты растений, обнаружили, что у высших растительных форм есть лишь две разновидности хлорофилла (упомянутые ранее А, В). Оба этих типа – порфирины, в которые есть атом магния. Преимущественно они входят в светособирающие комплексы, которые поглощают энергию света и направляют ее реакционным центрам. В центрах содержится сравнительно малый процент общего имеющегося у растения хлорофилла первого типа. Здесь протекают первичные взаимодействия, характерные фотосинтезу. Хлорофиллы сопровождаются каротиноидами: их, как выяснили ученые, обычно наблюдается пять разновидностей, не более. Эти элементы также собирают свет.

Будучи растворенными, хлорофиллы, каротиноиды – пигменты растений, имеющие узкие полосы светопоглощения, отстоящие друг от друга довольно значительно. Хлорофиллам присуща способность максимально эффективно поглощать синие волны, они могут работать с красными, но очень слабо улавливают зеленый свет. Расширение спектра и перекрытие обеспечивается хлоропластами, выделяемыми из листьев растения без особенного труда. Мембраны хлоропластов отличаются от растворов, поскольку красящие компоненты соединены с протеинами, жирами, вступают в реакции друг с другом, а энергия мигрирует между сборниками и центрами накопления. Если рассматривать спектр светопоглощения листа, он окажется еще более сложным, сглаженным, нежели отдельного хлоропласта.

Отражение и поглощение

Изучая пигменты листа растения, ученые установили, что некоторый процент попадающего на листок света отражается. Такое явление разделили на две разновидности: зеркальную, диффузную. Про первую говорят, если поверхность блестит, гладкая. Отражение листа преимущественно формируется вторым типом. Свет просачивается в толщу, рассеивается, меняет направление, поскольку и во внешнем слое, и внутри листа есть разделяющие поверхности с разными показателями преломления. Аналогичные эффекты наблюдаются, когда свет проходит сквозь клетки. Сильного поглощения нет, оптический путь намного больше толщины листа, измеренной геометрически, и листок способен поглотить больше света, нежели пигмент, выделенный из него. Листья поглощают намного больше энергии и в сравнении с отдельно исследуемыми хлоропластами.

Поскольку есть разные пигменты растений – красные, зеленые и прочие – соответственно, явление поглощения неравномерное. Лист способен воспринимать свет разной длины волны, но эффективность процесса отлична. Наиболее высокая поглощающая способность зеленой листве присуща относительно фиолетового блока спектра, красного, синего и голубого. Сила поглощения практически не определяется тем, насколько концентрированы хлорофиллы. Это связано с тем, что среде присуща высокая рассеивающая способность. Если пигменты наблюдается в высокой концентрации, поглощение происходит вблизи поверхности.

Источник

Основные пигменты растений: описание и их роль

Ученым известно, какие существуют пигменты растений – зеленые и фиолетовые, желтые и красные. Растительными пигментами назвали органические молекулы, которые есть в тканях, клетках растительного организма – именно благодаря таким включениям они приобретают окраску. В природе чаще прочих встречается хлорофилл, присутствующий в теле всякого высшего растения. Оранжевый, красноватый тон, желтоватые оттенки обеспечены каротиноидами.

А если подробнее?

Пигменты растений находятся в хромо-, хлоропластах. Всего современная наука знает несколько сотен разновидностей соединений этого типа. Внушительный процент всех обнаруженных молекул необходим для фотосинтеза. Как показали испытания, пигменты – это источники ретинола. Розовый и красный оттенки, вариации бурого и голубоватые колеры обеспечены наличием антоцианов. Такие пигменты наблюдаются в растительном клеточном соке. Когда в период похолодания дни становятся короче, пигменты вступают в реакции с иными соединениями, присутствующими в теле растения, отчего меняется окраска прежде зеленых частей. Листва деревьев становится яркой и красочной – той самой осенней, к которой мы привыкли.

пигменты растений хлорофилл

Самый известный

Пожалуй, практически любой школьник средней школы знает про хлорофилл – пигмент растений, необходимый для фотосинтеза. За счет этого соединения представитель растительного мира может поглощать свет солнца. Впрочем, на нашей планете не только растения не могут существовать без хлорофилла. Как показали дальнейшие исследования, это соединение совершенно незаменимо для человечества, так как обеспечивает естественную защиту от раковых процессов. Доказали, что пигмент угнетает канцерогены и гарантирует ДНК защиту от мутаций под влиянием отравляющих соединений.

Хлорофилл – зеленый пигмент растений, химически представляющий собой молекулу. Она локализована в хлоропластах. Именно за счет такой молекулы эти участки окрашены в зеленый. По своей структуре молекула – порфириновое кольцо. За счет этой специфики пигмент напоминает гем, являющийся структурным элементом гемоглобина. Ключевое отличие в центральном атоме: у гема его место занимает железо, для хлорофилла самым значимым является магний. Впервые ученые выявили этот факт в 1930 году. Событие произошло спустя 15 лет после открытия вещества Вильштаттером.

Химия и биология

Сперва ученые установили, что пигмент зеленого цвета в растениях бывает двух разновидностей, которым дали наименования по двум первым буквам латинского алфавита. Разница между разновидностями хоть и невелика, но все же есть, и наиболее ощутима при анализе боковых цепей. Для первой разновидности их роль играет СН3, для второго типа – СНО. Обе формы хлорофилла принадлежат к классу активных фоторецепторов. За их счет растение может поглощать энергетическую составляющую солнечного излучения. Впоследствии выявили еще три типа хлорофилла.

В науке зеленый пигмент растений называется хлорофиллом. Исследуя отличия двух основных разновидностей этой молекулы, присущей высшей растительности, выявили, что длина волн, которые могут поглощаться посредством пигмента, несколько отлична для типов А и В. Фактически, как считают ученые, разновидности эффективно дополняют друг друга, тем самым обеспечивая растению способность максимально качественно поглощать необходимые объемы энергии. В норме обычно первый тип хлорофилла наблюдается во втрое большей концентрации, нежели второй. Суммарно они формируют зеленый растительный пигмент. Три прочих типа нашли только у древних форм растительности.

пигменты высших растений

Особенности молекул

Изучая строение пигментов растений, выявили, что обе разновидности хлорофилла – это молекулы, растворимые жиром. Синтетические разновидности, созданные в лабораториях, растворяются водой, но их всасывание в организме возможно только при наличии жирных соединений. Растениями пигмент используется для получения энергии, обеспечивающей рост. В рационе людей он применяется с целью оздоровления.

Хлорофилл, как и гемоглобин, может нормально функционировать и производить углеводы, если соединен с протеиновыми цепочками. Визуально белок кажется образованием без четкой системы и структуры, но таковая на самом деле правильная, и именно поэтому хлорофилл может стабильно сохранять оптимальное положение.

Особенности активности

Ученые, изучая этот основной пигмент высших растений, обнаружили, что он есть во всякой зелени: в список включены овощи, водоросли, бактерии. Хлорофилл – полностью натуральное соединение. По природе оно обладает качествами протектора и предупреждает трансформацию, мутацию ДНК под влиянием отравляющих соединений. Были организованы специальные исследовательские работы в индийском ботаническом саду при НИИ. Как удалось обнаружить ученым, полученный из свежей зелени хлорофилл может уберечь от отравляющих соединений, патологических бактерий, а также успокаивает активность очагов воспаления.

Хлорофилл недолговечен. Эти молекулы очень хрупкие. Солнечные лучи ведут к гибели пигмента, но зеленый лист в силах генерировать новые и новые молекулы, замещающие отслуживших свое товарищей. В осенний сезон хлорофилл более не вырабатывается, поэтому листва теряет свой цвет. На первый план выходят другие пигменты, до этого скрытые от глаз внешнего наблюдателя.

фотосинтетические пигменты высших растений

Разнообразию нет предела

Разнообразие растительных пигментов, известных современным исследователям, исключительно велико. Из года в год ученые обнаруживают все новые молекулы. Сравнительно недавно проведенные исследования позволили добавить к двум упомянутым выше разновидностям хлорофилла еще три типа: С, С1, Е. Впрочем, самым главным по-прежнему считается тип А. А вот каротиноиды еще более разнообразны. Этот класс пигментов науке известен неплохо – именно за их счет приобретают оттенки корнеплоды моркови, многие овощи, плоды цитрусовых деревья и иные дары растительного мира. Как показали дополнительные испытания, канарейки имеют перья, окрашенные в желтый, именно благодаря каротиноидам. Они же дают цвет яичному желтку. За счет обилия каротиноидов азиатские жители обладают своеобразным оттенком кожи.

Ни человек, ни представители животного мира не располагают такими особенностями биохимии, которые бы позволяли вырабатывать каротиноиды. Эти вещества появляются на базе витамина А. Это доказывают наблюдения, посвященные пигментам растений: если курица с продуктами питания не получала растительность, желтки яиц будут очень слабого оттенка. Если канарейка получала большое количество пищи, обогащенной красными каротиноидами, ее перья приобретут яркий оттенок красного.

Любопытные особенности: каротиноиды

Желтый пигмент растений называется каротином. Ученые установили, что красный оттенок обеспечивают ксантофиллы. Число известных научному сообществу представителей этих двух типов постоянно увеличивается. В 1947 году ученые знали около семи десятков каротиноидов, а к 1970 их насчитывалось уже более двух сотен. В некоторой степени это сродни прогрессу знаний в сфере физики: сперва знали об атомах, затем – электронах и протонах, а впоследствии выявили еще более мелкие частицы, для обозначения которых используют лишь литеры. Можно ли говорить об элементарных частицах? Как показали испытания физиков, пока использовать такой термин рано – наука еще не развита в той степени, чтобы удалось их найти, если такие есть. Сходная ситуация сложилась с пигментами – из года в год открывают все новые виды и типы, а биологи лишь удивляются, не в силах объяснить многоликую природу.

хлорофилл зеленый пигмент растений

О функциях

Ученые, занимающиеся пигментами высших растений, пока не могут объяснить, для чего и почему природа предусмотрела столь большое разнообразие пигментных молекул. Выявлена функциональность некоторых отдельных разновидностей. Доказали, что каротин необходим для обеспечения сохранности хлорофилловых молекул от окисления. Механизм защиты обусловлен особенностями синглетного кислорода, формирующегося при реакции фотосинтеза в качестве дополнительного продукта. Это соединение отличается повышенной агрессивностью.

Еще одна особенность желтого пигмента в клетках растения – его способность увеличивать интервал длины волны, необходимой для процесса фотосинтеза. В настоящий момент такая функция не доказана точно, но проведено немало исследований, позволяющих предположить, что окончательное доказательство гипотезы «не за горами». Лучи, которые зеленый растительный пигмент не может усвоить, поглощаются желтыми пигментными молекулами. Затем энергия направляется хлорофиллу для дальнейшей трансформации.

Пигменты: такие разные

Кроме некоторых разновидностей каротиноидов, желтый цвет имеют пигменты, названные ауронами, халконами. Их химическое строение во многом напоминает флавоны. Такие пигменты в природе встречаются не слишком часто. Их нашли в листочках, соцветиях кислицы и львиного зева, ими обеспечивается окраска кореопсиса. Такие пигменты не переносят табачного дыма. Если окурить растение сигаретой, оно сразу покраснеет. Биологический синтез, протекающий в клетках растений с участием халконов, приводит к генерированию флавонолов, флавонов, ауронов.

И у животных, и у растений есть меланин. Этот пигмент обеспечивает коричневый оттенок волос, именно благодаря ему локоны могут стать черными. Если клетки не содержат меланина, представители животного мира становятся альбиносами. У растений пигмент обнаружен в кожуре красного винограда и у некоторых соцветий в лепестках.

фотосинтетические пигменты растений

Голубые и не только

Голубой оттенок растительность получает благодаря фитохрому. Это протеиновый растительный пигмент, ответственный за контроль цветения. Он регулирует прорастание семечка. Известно, что фитохром может ускорить цветение некоторых представителей растительного мира, у других происходит противоположный процесс замедления. В некоторой степени его можно сравнить с часами, но биологическими. В настоящий момент ученые пока не знают всю специфику механизма действия пигмента. Обнаружили, что строение этой молекулы корректируется временем суток и освещенностью, передавая информацию об уровне света в среде растению.

Синий пигмент в растениях – антоциан. Впрочем, есть несколько разновидностей. Антоцианы не только дают синюю окраску, но и розовую, ими же объясняются красный и сиреневый цвета, иногда – темный, насыщенный фиолетовый. Активная генерация антоцианов в растительных клетках наблюдается, когда понижается температура окружающего пространства, останавливается генерирование хлорофилла. Окраска листвы меняется с зеленой на красную, рыжую, синюю. Благодаря антоциану розы и маки имеют яркие алые цветы. Этот же пигмент объясняет оттенки соцветий герани и васильков. Благодаря голубой разновидности антоциана колокольчики имеют свой нежный цвет. Определенные разновидности этого типа пигментов наблюдаются в винограде, краснокочанной капусте. Антоцианы обеспечивают окрашивание терна, сливы.

Яркие и темные

Известен желтый пигмент, который ученые назвали антохлором. Его обнаружили в кожице лепестков первоцвета. Антохлор найден в примулах, соцветиях баранчика. Им богаты маки желтых сортов и георгины. Этот пигмент дает приятный цвет соцветиям льнянки, лимонным плодам. Он выявлен в некоторых других растениях.

Сравнительно редко в природе встречается антофеин. Это темный пигмент. Благодаря ему появляются специфические пятнышки на венчике некоторых бобовых культур.

Все яркие пигменты задуманы природой для специфической окраски представителей растительного мира. Благодаря такой расцветке растение привлекает птиц, животных. Тем самым обеспечивается распространение семян.

пигменты растений

О клетках и строении

Пытаясь определить, насколько сильно зависит окраска растений от пигментов, как эти молекулы устроены, зачем необходим весь процесс пигментации, ученые обнаружили, что в организме растений присутствуют пластиды. Так назвали небольшие тельца, которые могут иметь окраску, но бывают также бесцветными. Такие тельца есть только и исключительно у представителей растительного мира. Все пластиды разделили на хлоропласты, имеющие зеленый оттенок, хромопласты, окрашенные в разные вариации красного спектра (включая желтый и переходные оттенки), и лейкопласты. Последним не присущи какие-либо оттенки.

В норме растительная клетка содержит одну разновидность пластидов. Эксперименты показали способность этих телец трансформироваться из типа в тип. Хлоропласты обнаружены у всех растительных органов, окрашенных в зеленый. Лейкопласты чаще наблюдаются в частях, скрытых от прямых лучей солнца. Их много в корневищах, они обнаружены в клубнях, ситовидных частицах некоторых типов растений. Хромопласты типичны для лепестков, поспевших плодов. Тилакоидные мембраны обогащены хлорофиллом и каротиноидами. Лейкопласты не содержат пигментных молекул, но могут быть локацией процессов синтеза, скапливания питательных соединений – протеинов, крахмала, изредка жиров.

Реакции и трансформации

Изучая фотосинтетические пигменты высших растений, ученые выявили, что хромопласты окрашены в рыжий, красный благодаря присутствию каротиноидов. Принято думать, хромопласты – заключительный шаг развития пластидов. Вероятно, они появляются при трансформации лейко-, хлоропластов, когда те стареют. Во многом наличие таких молекул определяет цвет листвы по осени, а также яркие, радующие глаз цветы, плоды. Каротиноиды продуцируются водорослями, растительным планктоном, растениями. Их могут генерировать некоторые бактерии, грибы. Каротиноиды ответственны за окраску живых представителей растительного мира. Некоторые животные располагают системами биохимии, за счет которой каротиноиды трансформируются в иные молекулы. Исходное сырье для такой реакции получают с пищей.

Как показали наблюдения за розовыми фламинго, эти птицы собирают и фильтруют спирулину и некоторые другие водоросли для получения желтого пигмента, откуда затем появляются кантаксантин, астаксантин. Именно эти молекулы дают птичьему оперению такой красивый цвет. Многие рыбы и птицы, раки и насекомые имеют яркий цвет благодаря каротиноидам, которые получают с питанием. Бета-каротин трансформируется в некоторые витамины, которые используются на пользу человека – они защищают глаза от влияния ультрафиолета.

пигменты листа растения

Красный и зеленый

Говоря о фотосинтетических пигментах высших растений, следует отметить, что такие могут поглощать кванты световых волн. Отмечается, что это относится лишь к части спектра, видимой для человеческого глаза, то есть для длины волны в границах 400-700 нм. Растительные частицы могут поглощать лишь кванты, располагающие достаточным энергетическим запасом для реакции фотосинтеза. Ответственность за поглощение возложена исключительно на пигменты. Учеными исследованы древнейшие формы жизни растительного мира – бактерии, водоросли. Установлено, что в них есть разные соединения, которые могут акцептировать свет видимого спектра. Некоторые разновидности могут принимать световые волны излучения, не воспринимаемого человеческим глазом – из блока, ближнего к инфракрасному. Кроме хлорофиллов такая функциональность природой возложена на бактериородопсин, бактериохлорофиллы. Исследования показали важность для реакций синтеза фикобилинов, каротиноидов.

Разнообразие фотосинтетических пигментов растений отличается от группы к группе. Многое определяется условиями, в которых форма жизни обитает. У представителей высшего растительного мира разнообразие пигментов меньше, нежели у эволюционно древних разновидностей.

О чем идет речь?

Изучая фотосинтетические пигменты растений, обнаружили, что у высших растительных форм есть лишь две разновидности хлорофилла (упомянутые ранее А, В). Оба этих типа – порфирины, в которые есть атом магния. Преимущественно они входят в светособирающие комплексы, которые поглощают энергию света и направляют ее реакционным центрам. В центрах содержится сравнительно малый процент общего имеющегося у растения хлорофилла первого типа. Здесь протекают первичные взаимодействия, характерные фотосинтезу. Хлорофиллы сопровождаются каротиноидами: их, как выяснили ученые, обычно наблюдается пять разновидностей, не более. Эти элементы также собирают свет.

Будучи растворенными, хлорофиллы, каротиноиды – пигменты растений, имеющие узкие полосы светопоглощения, отстоящие друг от друга довольно значительно. Хлорофиллам присуща способность максимально эффективно поглощать синие волны, они могут работать с красными, но очень слабо улавливают зеленый свет. Расширение спектра и перекрытие обеспечивается хлоропластами, выделяемыми из листьев растения без особенного труда. Мембраны хлоропластов отличаются от растворов, поскольку красящие компоненты соединены с протеинами, жирами, вступают в реакции друг с другом, а энергия мигрирует между сборниками и центрами накопления. Если рассматривать спектр светопоглощения листа, он окажется еще более сложным, сглаженным, нежели отдельного хлоропласта.

Отражение и поглощение

Изучая пигменты листа растения, ученые установили, что некоторый процент попадающего на листок света отражается. Такое явление разделили на две разновидности: зеркальную, диффузную. Про первую говорят, если поверхность блестит, гладкая. Отражение листа преимущественно формируется вторым типом. Свет просачивается в толщу, рассеивается, меняет направление, поскольку и во внешнем слое, и внутри листа есть разделяющие поверхности с разными показателями преломления. Аналогичные эффекты наблюдаются, когда свет проходит сквозь клетки. Сильного поглощения нет, оптический путь намного больше толщины листа, измеренной геометрически, и листок способен поглотить больше света, нежели пигмент, выделенный из него. Листья поглощают намного больше энергии и в сравнении с отдельно исследуемыми хлоропластами.

Поскольку есть разные пигменты растений – красные, зеленые и прочие – соответственно, явление поглощения неравномерное. Лист способен воспринимать свет разной длины волны, но эффективность процесса отлична. Наиболее высокая поглощающая способность зеленой листве присуща относительно фиолетового блока спектра, красного, синего и голубого. Сила поглощения практически не определяется тем, насколько концентрированы хлорофиллы. Это связано с тем, что среде присуща высокая рассеивающая способность. Если пигменты наблюдается в высокой концентрации, поглощение происходит вблизи поверхности.

Источник

Adblock
detector