Клеточный центр его особенности строения и жизнедеятельности в растительной и животных клетках

Сравнение особенностей растительной и животной клетки

Строение растительной и животной клетки

По своему строению клетки всех живых организмов можно разделить на два больших отдела: безъядерные и ядерные организмы.

Для того чтобы сравнить строение растительной и животной клетки, следует сказать, что обе эти структуры принадлежат к надцарству эукариот, а значит, содержат мембранную оболочку, морфологически оформленное ядро и органеллы разного назначения.

Сравнение животной и растительной клетки

Растительная Животная
Способ питания Автотрофный Гетеротрофный
Клеточная стенка Находится снаружи и представлена целлюлозной оболочкой. Не меняет своей формы Называется гликокаликсом — тонкий слой клеток белковой и углеводной природы. Структура может менять свою форму.
Клеточный центр Нет. Может быть только у низших растений Есть
Деление Образуется перегородка между дочерними структурами Образуется перетяжка между дочерними структурами
Запасной углевод Крахмал Гликоген
Пластиды Хлоропласты, хромопласты, лейкопласты; отличаются друг от друга в зависимости от окраски Нет
Вакуоли Крупные полости, которые заполнены клеточным соком. Содержат большое количество питательных веществ. Обеспечивают тургорное давление. В клетке их относительно немного. Многочисленные мелкие пищеварительные, у некоторых — сократительные. Строение различно с вакуолями растений.

Особенность строения растительной клетки:

Растительная клетка особенности строения

  • Есть пластиды;
  • Присутствует прочная целлюлозная оболочка;
  • Автотрофный тип питания;
  • Синтез макроэргических соединений, который происходит в хлоропластах и митохондриях;
  • Наличие крупных вакуолей;
  • Ядерный центр присутствует только у низших растений;
  • Минеральные соли находятся в виде кристаллов (включений).

Особенность строения животной клетки:

Животная клетка особенности строения

  • Пластиды отсутствуют;
  • Непрочная клеточная оболочка, которая называется гликокаликсом;
  • Гетеротрофы;
  • Синтез макроэргических соединений (АТФ) осуществляется исключительно в митохондриях;
  • Вакуоли только мелкие, крупные отсутствуют;
  • Ядерный центр есть у всех эукариот;
  • Минеральные соли растворены в цитоплазме.

Это интересно: атф это что за вещество — состав, функции и роль в организме.

Краткое сравнение растительной и животной клетки

Растительная и животная клетки

  • Если сравнивать эти две структуры, важным отличием является способ питания: все растения относятся к автотрофам. Для животных органические вещества являются главным источником углерода, которые попадают в организм вместе с пищей, таким образом они относятся к гетеротрофам.
  • У растений есть пластиды для фотосинтеза, которые обуславливают их цвет (хромопласты — красные, хлоропласты — зеленые и лейкопласты — бесцветные), во втором типе клеток хлоропласты отсутствуют.
  • Снаружи растения покрыты плотной оболочкой, которая называется плазматическая мембрана и состоит из целлюлозы, тогда как у животных наружная мембрана представлена гликокаликсом.

Общие признаки строения

Растительная и животная клетки общие признаки строения

  1. Все ядерные структуры покрыты очень тонкой мембранной оболочкой, которая ограждает их от взаимодействия с внешней средой. С помощью специальных наростов, называемых складкам, они очень близко прилегают друг к другу. Обмен веществ осуществляется через специальные отверстия — поры, которые пронизывают мембрану.
  2. Главным органоидом всех типов клеток растений и животных является ядро. Чаще всего оно находится в центре и может содержать одно или несколько ядрышек, которые, в свою очередь, синтезируют белок и структуры РНК.
  3. В обеих структурах содержится бесцветная полужидкая цитоплазма, которая заполняет пространство между ядром и мембраной. В ней находятся органоиды и запасные питательные вещества.
  4. Важным является генетический код, который наследуется одинаково.
  5. Обмен веществ и энергии происходит по одинаковому принципу.
  6. Одинаковый процесс деления, т.к. и животная, и растительная могут делиться путем митоза.
  7. Имеют одинаковую химическую составляющую.
  8. Сходный состав органоидов (ЭПС, Аппарат Гольджи, рибосомы, лизосомы, митохондрии).

Источник



Клеточный центр

Клеточный центр (центросома) — это немембранная органелла в клетках эукариот.

Явление центросомы было описано в 1870-х гг практически одновременно несколькими учеными:

  • Вальтером Флеммингом;
  • Оскаром Гертвигом;
  • Эдвардом ван Бенеденом.

Позднее Эдвард ван Бенеден и Теодор Бовери сумели параллельно друг с другом установить, что центросферы не исчезают в окончании процесса митоза, а сохраняются в клетке, которая находится в интерфазе, при этом зачастую обнаруживаются строго в геометрическом центре.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Со временем знания о центросоме, ее устройстве и функциях в биологии прибавлялись. Это отражалось также на том, какие названия присваивали клеточному центру. Так, например, в качестве изначального понятия использовался термин «центросфера», затем — «центральные корпускулы». Позднее был введено в оборот определение «центросома», но окончательно оно прижилось лишь в середине XX века, когда была определена структура клеточного центра.

Все ли клетки содержат клеточный центр

Несмотря на то что центросома выполняет довольно важную функцию, она присутствует в клетках далеко не у всех организмов. Так, ее обнаруживают чаще всего в клетках животных, тогда как высшие растения, низшие грибы и ряд простейших не обладают ею.

Особенности строения, где находится и как выглядит

Приведем описание основных компонентов центросомы:

  1. Центриоли (материнская и дочерняя) — включают в себя микротрубочки, белковые стержни и нити. Являются центром организации микротрубочек. Лишь материнская центриоль имеет в наличии дополнительные придатки.
  2. Сателлиты — составные части материнской центриоли, соединенные с ней с помощью белковых ножек. Ответственны за производство микротрубочек и функционирование веретена деления.
  3. Микротрубочки — состоят из белка тубулина, обладают плюс-концами, которые относятся к материнской центриоли, и минус-концами, которые распределяются по периферии клетки. Непосредственно влияют на процесс деления клетки тем, что распределяют хромосомы между полюсами.
  4. Матрикс или центросомное гало — имеет в составе различные белки, принимает участие в создании микротрубочек, окружает центриоли и заметно выделяется цветом под микроскопом.

Что касается местоположения, то чаще всего центросома располагается практически в геометрическом центре клетке, рядом с ядром или же рядом с аппаратом Гольджи. Характерным признаком органеллы является размер: он не превышает 0,5 мкм в длину и 0,2 мкм в диаметре.

Теперь определим, как выглядит органелла:

Органелла

Какую функцию выполняет клеточный центр

Центросома (клеточный центр) выполняет важнейшие функции в клетке:

  1. У простейших организмов формирует органоиды, которые предоставляют возможность передвигаться по водной среде. Эти органоиды называются жгутиками.
  2. У эукариотических клеток отвечает за образование ресничек, которые делают возможной кожную рецепцию — то есть восприятие внешних раздражителей кожными покровами.
  3. Играет важную роль в митотическом делении клеток за счет того, что формирует нити веретена и способствует равному распределению информации ДНК между дочерними клетками.
  4. Органеллы, составляющие центросомы, то есть центриоли, участвуют в образовании микротрубочек, которые являются важными элементами опорно-сократительного аппарата.
  5. Клеточный центр и его особенности важны для медицины: так, увеличение количества центросом в клетке свидетельствуют о наличии злокачественной опухоли.

Поведение центросомы в митозе

Особый интерес представляет функции центросомы при митозе.

Митоз — непрямое деление клетки, наиболее распространённый способ репродукции эукариотических клеток.

Перед митозом клеточный центр дублирует сам себя. Во время этого процесса материнские центриоли отходят друг от друга и распределяются по разным полюсам клетки.

То есть нужно помнить, что во время митоза клетка обладает двойным набором центросом. Одновременно же протекает «сборка» микротрубочек.

Затем начинается расхождение центросом друг от друга. В это же время микротрубочки отсоединяются друг от друга с минус-конца, укорачиваются и, следовательно, тянут хромосому к тому или иному полюсу клетки.

В итоге новая клетка получает набор хромосом и одну центросому.

Центросома в интерфазной клетке

Как уже говорилось выше, клеточный центр не исчезает после митоза, а сохраняется в интерфазе.

Во время интерфазы клетка готовится к будущему делению: увеличивается в размерах, дублирует цитоплазму, клеточные белки и собственные органеллы, в том числе центросомы.

Удвоение центросом начинается с того, что возле материнской и дочерней центриолей начинают формироваться процентриоли. Они растут до тех пор, пока не приобретут размеры исходных центриолей. По завершении этого процесса возникает диплосома — одна из предшествующих центриолей с новосинтезированной центриолью. Причём бывшая дочерняя центриоль меняет свой статус на материнскую, а бывшая материнская центриоль остается таковой. Затем диплосомы разъединяются.

Данный процесс называется центросомным циклом.

Клеточный центр как организатор фибриллярных белков

Фибриллярные белки — белки, имеющие вытянутую нитевидную структуру.

К ним относятся:

  • кератины;
  • фиброины;
  • коллагены;
  • эластины.

На сегодняшний день установлено, что клеточный центр — это главная органелла в процессе организации таких белков. Этот процесс имеет четыре пути:

Источник

Клеточный центр, его особенности строения и жизнедеятельности в растительной и животных клетках.

В клетках животныХ, растений и одноклеточных микротрубочки поляризованы, так что большей частью их растущие плюс-концы направлены к периферии клетки. Это связано с тем, что МТ(микротрубочки) начинают свой рост от специальных участков в клетке, от центров организации микротрубочек(ЦОМТ). Некоторые из ЦОМТ имеют сложную морфологическую организацию другие устроены иначе. Различные ЦОМТ можно разделить на несколько групп: центросомные клеточные центры организации микротрубочек, не имеющие четкой локации.

Центросомы и центриоли.

Это очень мелкие тельца, размер которых находится на границе разрешающей способности светового микроскопа, обычно они располагаются в геометрическом центре клетки, откуда их название. В некоторых объектах удавалось увидеть, что мелкие плотные тельца(центриоли), обычно в паре(диплосома), окружены зоной более светлой цитоплазмы(собственно центросома), от которой отходят радиально тонкие фибриллы (центросфера).

Центросомы характерны и обязательны для клеток животных, их нет у высших растений, у низших грибов и у некоторых простейших. Центросомы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках центросомы часто определяют полярность клеток эпителия и располагаются вблизи аппарата Гольджи. Такая связь центросом с аппаратом Гольджи характерна для многих клеток, в том числе для клеток крови и нервных клеток.

Типичное строение клеточный центр имеет в клетках животных. Он представляет собой зону, состоящую из центриолей и окружающей их аморфной фиблиллярной массы, или матрикса……

Тонкое строение центриолей удалось изучить только с помощью электронного микроскопа…. Основу строения центриолей составляют расположенный по окружности девять триплетов микротрубочек, образующих таким образом полый цилиндр. Его ширина около 0,15 мкм, а длина такого цилиндра 0,3-0,5 мкм.

Первая микротрубочка триплета(А-микротрубочка) имеет диаметр около 25 нм и толщину стенки 5 нм, которая состоит из 13 глобулярных субъединиц. Длина каждого триплета равна длине центриоли. Вторая и третья(В и С) микротрубочки отличаются от А-микротрубочки тем, что они являются неполными, содержат 11 субъединиц и вплотную примыкают к свои соседям. Каждый триплет располагается к радиусу такого цилиндра под углом такого цилиндра около 40 градусоф. Кроме микротрубочек в состав центриоли входит ряд дополнительных структур. От микротрубочки А отходят так называемые «ручки», т.е. выросты, один из которых(внешний) направлен к микротрубочке С соседнего триплета, а другой(внутренний) – к центру цилиндра. Обычно в интерфазных клетках всегда присутствуют две центриоли, располагающиеся рЯдом друг с другом, образуя дУплет центриолей, или диплосому. В диплосоме центриоли располагаются под прямым углом друг к другу. Из 2 центриолей различают «материнскую» и «дочернюю», продольная ось последней перпендикулярна продольной оси материнской центриоли. Обе центриоли сближены своими концами так, что проксимальный конец дочерней центриоли как бы смотрит на поверхность материнской. В дистальном участке материнской центриоли располагается аморфный материал в виде выростов или шпор – это придатки. Их нет на дочерней центриоли.

При исследовании в электоронном микроскопе интерфарных цетриолей было найдено, что лучистое сияние центросферы , обнаруживаемое в световом микроскопе, представляет собой большое число микротрубочек, радиально расходящихся от зоны диплосомы. В диплосоме материнская центриоль содержит ряд дополнительных структур: перицентриолярные сателлиты, количество их непостоянно, они ножка на стенке центриоли и головка на этой ножке. Эти дополнительные структуры являются центрами, на которых осуществяется сборка микротрубочек из тубулинов.

Материнская центриоль на всех стадиях митоза окружена зоной тонких фибрилл – центриолярное фибриллярное гало. От этого гало радиально отходят микротрубочки. Происходит формирование веретена митотического аппарата, состоящего из микротрубочек. Это действительно веретено! Где на концах его на полюсах клетки располагаются диплосомы, окруженные центросферой. Происходит полимеризация трубочек. Трубочки отрастают из зоны гало. Там в это время нет сателлитов и цитоплазма теряет миктрубочки: они разбираются и на веретено их! Это первая фаза активности.)

Далее оно имеет тоже строение, но к телофазе толщина фибриллярного гало уменьшается. К концу телофазы, когда произошло разделение клетки на двое, а хромосомы начали деконденсироваться и образовывать ядра, идет разрушение веретена деления, его микротрубочки обратно деполимеризуются.) При этом материнская и дочерняя отходят друг от друга на небольшие расстояния. В это время микротрубочек в цитоплазме практически нет.

В начале G-1 периода на поверхности материнской центриоли возникают сателлиты, от которых отходят микротрубочки, которые начинают расти в длину и заполнять собой цитоплазму. Вторая форма активности центра клеточного- образование цитоплазматических микротрубочек в интерфазных клетках.

В клетке происходит конвеерная смена и репродукция цитоплазматических трубочек.

При наступлении S-периода клеточный центр приступает к 4 форме активности – удвоение числа центриолей. В это время в каждой из разошедшихся центриолей идет закладка новых центриолярных цилиндров – процентриолей. Далее в районе проксимальных концов каждой центриоли перпендикулярно длинной оси закладываются сначала 9 одиночных микротрубочек, затем они преобразуются в 9 дуплетов, т.е. удваиваются, а потом в 9 триплетов растущих микротрубочек новых центриолярных цилиндров.

В С-периоде во время удвоение центриолей материнская проявляет вторую форму активности – она продолжает быть центром образования цитоплазматических микротрубочек. В результате около каждой центриоли вырастает новая дочерняя цетриоль. Поэтому при завершении С-периода в клетке 2 диплосомы.

Далее G2- период, т.е. пост синтетический. Исчезают сателлиты на мат. Диплосоме. А обе материнские покрываются фиб-ым гало. Параллельно идет исчезновение микротрубочек и клетка старается приобрести шаровидную форму.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Клеточный центр: функции и строение, распределение генетической информации

Клеточный центр (или центросома) — не мембранная органелла, которая находится в центре клетки, рядом с ядром. Отсюда и пошло название органоида. Присутствует только у низших растений и животных; высшие растения, грибы и некоторые простейшие лишены его.

Клеточный центр

Открытие в науке

Описание центросом на полюсах веретена деления, которые находятся в клетках во время митоза, сделали почти одновременно ученые-биологи Флеминг В. и Гертвиг О. Открытие сделано в 70-х годах XIX ст.

Ученые еще тогда установили, что после завершения митоза, центросомы не исчезают, а остаются в интерфазном периоде. Подробное строение удалось определить после появления электронной микроскопии в середине XX ст.

Функции и строение

Клеточный центр — органоид, видимый в оптический микроскоп в клетках животных и низших растений. Он находится обычно около ядра или в геометрическом центре клетки и состоит из двух палочковидных телец центриолей, размером около 0,3-1 мкм.

Под электронным микроскопом установлено, что центриоль представляет собой цилиндр, стенки которого построены девятью триплетами очень тонких трубочек. Каждый триплет включает 2 неполных набора — 11 протофибрил и 1 полный — 13 протофибрил.

Все центриоли имеют белковую ось, от которой к триплетам направляются тонкие нити из белка. Центриоли находятся в окружении бесструктурного вещества — центриолярного матрикса. Здесь происходит формирование микротрубочек, благодаря белку гамма-тубулину.

В клеточный центр входят две центриоли: дочерняя и материнская, которые взаимно перпендикулярны друг к другу и вместе формируют диплосому. Материнская центриоль в составе имеет дополнительные структурные элементы — сатиллиты, их количество постоянно меняется, и располагаются они на всем протяжении центриоли.

Строение клеточного центра

Строение клеточного центра

В середине цилиндра находится полость, заполненная однородной массой. Пара центриолей, окружена более светлой зоной, называется центросферой.

Центросфера состоит из фибриллярных белков (основной — коллаген). Здесь располагаются микротрубочки, много микрофибрилл и скелетных фибрилл, которые обеспечивают фиксацию клеточного центра возле ядерной оболочки. Только в эукариотических клетках центриоли находятся под прямым углом относительно друг друга. Простейшим, нематодам не характерно такое строение.

Цитологическая характеристика
Структурные элементы Строение Функции
Центриолярный матрикс Немембранное образование, состоящее из белка гамма-тубулина Принимает участие в создании микротрубочек
Центросома Представлена парой сформированных центриолей, в составе которых имеется девять триплетов микротрубочек. Построены из белка коллагена и располагаются перпендикулярно относительно друг друга. Отвечает за образование веретена деления, формирует цитоскелет

Механизм распределения генетической информации

Перед митозом клеточный центр удваивается, при этом материнские центриоли рассоединяются и расходятся к противоположным полюсам.

Так в клетке появляется два клеточных центра. От них по направлению к центру, к хроматидам, идет сборка микротрубочек. Микротрубочки крепятся к центромерам пар хроматид и обеспечивают их равномерное распределение по дочерним клеткам.

Во время расхождения идет разборка микротрубочек с минус-конца, который расположен в центросоме. Микротрубочка укорачивается и, таким образом, тянет хромосому к определенному полюсу клетки. Каждая новообразованная клетка получает диплоидный набор хромосом и по одной центросоме.

Значение

Клеточный центр — главная структура, отвечающая за создание и управление микротрубочками клетки.

Выполняет такие функции:

  1. Формирование органоидов движения простейших организмов (жгутики), которые дают возможность перемещаться в водной среде.
  2. Образует реснички на поверхности эукариотических клеток, которые необходимы для восприятия внешних раздражителей (кожная рецепция).
  3. Формирует нити веретена деления во время непрямого, митотического деления клетки. Обеспечивает равное распределение генетической информации между дочерними клетками.
  4. Принимает участие в формировании микротрубочек, которые уходят или в цитоплазму, или становятся компонентом опорно-сократительного аппарата.
  5. Увеличение количества центросом характерно для опухолевых клеток.

Клеточный центр играет важную роль в процессе перемещения хромосом при митозе. С ним связана способность некоторых клеток к активному движению. Это доказывается тем, что в основании жгутиков или ресничек подвижных клеток (простейшие, сперматозооны) находятся образования такой же структуры, как и клеточный центр.

Источник

Adblock
detector