Физическая природа звезд виды звезд реферат

Природа и состав звезд

Цель реферата – изучить природу и состав звезд. В соответствии с выбранной темой поставлены следующие задачи:
Рассмотрение понятия, параметров и классификаций звезд.
Описание эволюции звезд.
Изучение звездных скоплений и ассоциаций
Изучение состава звезд.

Содержание
Работа состоит из 1 файл

реферат по ксе.docx

Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Южно-Уральский государственный университет»

Факультет «Экономики и управления»

Кафедра «Мировой экономики и экономической теории»

Природа и состав звезд

По дисциплине «Концепции современного естествознания»

Доцент кафедры Физическая химия

Тепляков Юрий Николаевич

студентка группы 236

Цель реферата – изучить природу и состав звезд. В соответствии с выбранной темой поставлены следующие задачи:

  • Рассмотрение понятия, параметров и классификаций звезд.
  • Описание эволюции звезд.
  • Изучение звездных скоплений и ассоциаций
  • Изучение состава звезд.
  1. Понятие звезд, их параметры и классификация…………………………….5
  2. Эволюция звезд………………………………………………………………. .9
  3. Звездные скопления и ассоциации. …………….……………. ……… …..13
  4. Химический состав звезд…………………………………………………….18

Библиографический список……………………………………………………. 24

Наука о звездах – астрономия – одна из самых древних, ведь эти загадочные небесные тела всегда интересовали человека. Как и все тела в природе, звёзды не остаются неизменными, они рождаются, эволюционируют, и, наконец «умирают». Чтобы проследить жизненный путь звёзд и понять, как они стареют и что собой представляют, необходимо знать, как они возникают и что из себя представляют.

Актуальность исследования звезд возрастает с каждым днем, что связано с расширением горизонта знаний человечества о космосе и внеземных формах жизни. Вселенная состоит на 98% из звезд. Они же являются основным элементом галактики.

1.Понятие и классификация звезд

Звезды – это массы светящегося газа, более или менее равномерно разбросанные по небу (хотя иногда они образуют группы), которые мы можем наблюдать на ночном небе как маленькие точки. Звезды — это основные тела Вселенной, в них сосредоточено более 90 % наблюдаемого вещества.

Основными параметрами звёзд являются:

  • масса,
  • светимость (полное количество энергии, излучаемое звездой в единицу времени L),
  • радиус,
  • температура поверхности.

Масса звезды приобрела большую значимость, когда были открыты источники энергии звезд. Масса Солнца Мс = 2 10 30 кг, а массы почти всех звезд лежат в пределах 0,1 — 50 массы Солнца. Практически наиболее верным способом определения массы звезды являются исследования движений двойных звезд. Оказалось, что положение звезды на Главной последовательности определяется ее массой

Светимость звезды L часто выражается в единицах светимости Солнца, которая равна 3,86∙10 26 Вт. По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство звезд составляют «карлики», светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая «абсолютная величина» звезды. Абсолютная звёздная величина (M) для звёзд определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой – от расстояния до нее. Абсолютная звездная величина Солнца во всем диапазоне излучения M = 4,72. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например +8, +10.

Используя самую современную технику астрономических наблюдений, удалось в настоящее время непосредственно измерить угловые диаметры (а по ним, зная расстояние, и линейные размеры) лишь нескольких звезд. В основном астрономы определяют радиусы звезд другими методами. Один из них дает формула.

Определив радиусы многих звезд, астрономы убедились в том, что существуют звезды, размеры которых резко отличаются от размеров Солнца. Наибольшие размеры у сверхгигантов. Их радиусы в сотни раз превосходят радиус Солнца. Например, радиус звезды а Скорпиона (Антарес) не менее чем в 750 раз превосходит солнечный. Звезды, радиусы которых в десятки раз превосходят радиус Солнца, Называются гигантами. Звезды, по размерам близкие к Солнцу или меньшие, чем Солнце, относятся к карликам.

Радиус звезд – непостоянная величина. Он может изменяться, например как у Бетельгейзе, чей радиус за последние 15 лет уменьшился на 15%.

Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. – желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений. По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца.

Классификации в любой области науки могут быть как искусственными (по каким-то отдельным признакам, которые легко определяются), так и естественными, т.е. отражающими суть объекта, его комплексную характеристику, происхождение и т.п., хотя принадлежность к тому или иному классу в этом случае не всегда легко определяется. Объекты могут объединяться как в реально существующие группы (по качественным признакам), так и в условные группы, отличающиеся только количественно. Современная звёздная астрономия демонстрирует нам все эти случаи.

Классификации звезд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий, звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее деление звезд гораздо более сложное: дополнительно оно включает абсолютную звездную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.

Наиболее известной и общей является классификация на основе цвета, размера и температуры звезды . Астрономы разделяют звезды на различные спектральные классы. Спектральная классификация, разработка которой началась в XIX веке, первоначально была основана на интенсивности линий поглощения водорода. Классы, которые наилучшим образом описывают температуру звезд, используются и в настоящее время. Типичные спектры для семи основных спектральных классов – OBAFGKM. Оказывается, что голубые звезды спектрального класса О — это самые большие звезды. Они превосходят Солнце в более чем сорок раз по массе, в двадцать раз по размерам и в миллион раз ярче Солнца. Следующими по шкале звездных масс идут белые звезды спектральных классов В и А. Далее следуют желто-белые звезды класса F и желтые звезды класса G, подобные нашему Солнцу. Звезды меньшей массы более тусклые и меньше по размеру. Массы и размеры оранжевых звезд, относящихся к классу К, составляют около трех-четвертых от массы Солнца. Звезды класса М самые холодные и имеют густой оранжево-красный цвет. Типичные представители этого класса примерно в пять раз меньше Солнца по массе и радиусу и в два раза ниже по температуре поверхности, которая составляет порядка 3000 К. Около сотни таких звезд будут иметь такую же светимость как наше Солнце. На классе М заканчивается гарвардская классификация звезд.

В самом начале ХХ века датский астроном Герцшпрунг и американский астрофизик Рессел обнаружили существование зависимости между температурой поверхности звезды и ее светимостью. Эта зависимость иллюстрируется диаграммой, по одной оси которой откладывается спектральный класс, а по другой абсолютная звездная величина. Вместо абсолютной звездной величины можно откладывать светимость в логарифмической шкале, а вместо спектральных классов непосредственно температуру поверхности. Такая диаграмма называется диаграммой спектр-светимость или диаграммой Герцшпрунга – Рессела. При этом температуру откладывают в направлении справа налево, чтобы сохранить старый вид диаграммы, возникший еще до того, как была изучена зависимость цвета звезды от температуры ее поверхности.

Если бы между светимостями и их температурами не было никакой зависимости, то все звезды распределялись на такой диаграмме равномерно. Но на диаграмме обнаруживаются несколько закономерностей, которые называют последовательностями. Положение каждой звезды в той или иной точке диаграммы определяется ее физической природой и возрастом (стадией эволюции). Звезда не находится в течение всей своей жизни на месте, а перемещается по диаграмме Г-Р. Поэтому на диаграмме Г-Р как бы запечатлена вся история рассматриваемой совокупности звезд. Анализ это диаграммы позволяет выделить различные группы звезд, объединенные общими физическими свойствами. Наиболее богатую звездами диагональ, 90 % всех звезд, идущую из верхнего левого угла в правый нижний, называют главной последовательностью. Именно вдоль нее расположены звезды, о которых мы с вами говорили выше. В настоящее время выяснилось, что звезды главной последовательности – нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности. (см. рис.№1)

Существующие в природе звезды имеют более широкие диапазоны параметров, нежели звезды главной последовательности. Такие звезды мы наблюдаем на диаграмме Г-Р вне зоны главной диагонали. Они также образуют последовательности, т.е. в этих группах тоже существуют определенные зависимости между светимостями и температурами, разные для каждой группы. Эти группы названы классами светимости. Их всего семь. А именно: I-сверхгиганты (звезда, находящая в преддверии вспышки сверхновой звезды), II-яркие гиганты ( звезды, лежащие между гигантами и сверхгигантами ), III-гиганты, IV – субгиганты (бывшая звезда главной последовательности, подобная Солнцу или несколько более массивная, чем Солнце, в ядре которой иссякло водородное топливо. ), V- звезды главной последовательности, VI- субкарлики (это звёзды тускнее звёзд главной последовательности того же спектрального класса . ), VII- белые карлики (звезды, меньше Солнца).

Источник

Звезды 🌟 Что такое, описание, виды, характеристика, фото и видео

Звезды - что такое, описание, виды, характеристика, фото и видео

Космос

Вид звездного неба завораживает. Кажется, что им можно любоваться бесконечно. Столько там таинственности и загадочности. Но что же собой представляют звезды? Какие космические объекты так называют?

Что такое звезды

Звезды – это большие небесные тела, разбросанные по всему космическому пространству. Силой взаимного притяжения в них удерживаются определенные вещества. Звезды имеют высокую температуру, благодаря чему излучают свет, который могут увидеть наблюдатели с Земли. Объекты раскалены до такой степени, что любое вещество, даже металлы, находятся в них в газообразном состоянии, а их совокупность называется плазмой.

Почему звезды светятся

Звезды светятся благодаря трансформации водорода в гелий

Звезды светятся благодаря трансформации водорода в гелий

Все дело в разнице температур ядра и поверхности. Внутри звезды она может достигать 10 млн градусов и больше. Благодаря этому, в космическом объекте постоянно происходят термоядерные реакции, что превращает одни химические элементы в другие. К примеру, водород, из которого состоит большая часть звезд, становится в их недрах гелием. Благодаря этому возникает свечение, которое и видят земляне.

Наименование звезд

Карта звездного неба с наименованиями звезд (нажать для увеличения)

Карта звездного неба с наименованиями звезд (нажать для увеличения)

Имена отдельным космическим телам и созвездиям люди стали давать еще в глубокой древности. В то время человеку небо представлялось обиталищем различных мифических существ, в честь которых им и давали названия. Большинство из них используются до сих пор.

Разительно отличаются названия созвездий в Северном и Южном полушариях. Здесь преобладают не мифические существа, а различные части кораблей и морских обитателей. Дело в том, что Южное полушарие в древнем мире было слабо известно учеными. Его активное освоение началось с эпохой великих географических открытий. Логично, что многие созвездия южного полушария были впервые обнаружены моряками, которые и давали им название, исходя из собственных предпочтений. Так на небосводе появились Киль, Корма и пр.

Сейчас ученые выделяют 88 созвездий. Из них 12 относятся к зодиакальным. Самое яркое небесное тело в них обозначают греческой буквой «альфа», следующая – «бета» и т.д.

Отдельные звезды обозначают буквенно-цифровой аббревиатурой. Кроме того, небесные тела классифицируют по цвету и размерам. К примеру, голубые гиганты или коричневые карлики.

Формирование звезды

Моментом рождения звезды является объединение молекул водорода и гелия в одно облако. Оно начинает вращаться. Появляется внутренняя гравитация. Это обстоятельство ускоряет вращение.

Постепенно внешнее пространство облака начинает напоминать диск, а внутреннее – сферическое скопление. Температура материала повышается, как и его плотность. Это приводит к образованию шарообразной протозвезды.

Со временем давление и тепло повышаются до 1 млн.оС. Это приводит к слиянию атомных ядер. В этот момент и зажигается новая звезда. Небесное тело при этом практически незаметно для глаз наблюдателя, т.к. его окутывает мощное газо-пылевое облако.

Постепенно вследствие ядерного синтеза происходит преобразование некоторого количества атомной массы в энергию.

Все это время звезда из-за воздействия различных сил находится в движении. В основном она вращаются вокруг галактик или космических объектов с мощным гравитационным полем.

Звездная эволюция

У любого космического тела есть определенный цикл развития, который называется эволюцией. Большое влияние на этот процесс оказывает масса звезды. Чем больше весит объект, тем менее продолжительным будет его жизненный цикл.

Космические тела с промежуточной массой, т.е. в 1,5-8 раз тяжелее Солнца, зарождаются из облака, размер которого может достигать 100000 световых лет. Когда температура внутри достигает 3725 оС, из туманности образуется протозвезда. После начала слияния водорода она преобразуется в объект с переменными колебаниями в яркости. Благодаря сжатию силы тяжести, уравновешивается процесс расширения. Звезда начинает получать энергию от синтеза водорода, происходящего в ее ядре. На формирование объекта уходит около 10 млн. лет.

После того, как весь водород преобразовался в гелий, под действием силы гравитации материя становится ядром, которое начинает быстро нагреваться. Происходит расширение внешних слоев, которые благодаря воздействию внешней среды быстро охлаждаются. Так образуется красный гигант. Далее начинаются химические процессы с гелием. Когда он полностью преобразуется в другие вещества, ядро под действием увеличивающейся температуры расширяет оболочку. Это приводит к образованию белого карлика, температура которого может достигать 100000 оС. Продукты, необходимые для нагревания, окончательно иссякают. Поэтому объект начинает постепенно охлаждаться. Через несколько миллиардов лет он становится черным карликом и заканчивает свой жизненный путь.

Наиболее быстро эволюция протекает у звезд большой массы. От формирования объекта до окончания жизненного цикла проходит от 10000 до 100000 лет. В начале своей жизни они имеют высокую температуру, яркость и большие размеры. Звезда отличается насыщенным голубым цветом. Постепенно она становится красным сверхгигантом, внутри которого идет активное сплавление углерода в тяжелые элементы. Благодаря этому образуется железное ядро. Его ширина может достигать 6000 км. Его ядерное излучение не может сопротивляться силе притяжения.

Когда масса космического объекта примерно в 1,5 раза превышает солнечную, происходит крушение ядра. Это приводит к образованию сверхновой звезды. В процессе разрушения его температура поднимается до 10 млрд. оС, благодаря чему железо разбивается на нейроны. За секунду ядро уменьшается в размерах до 10 км. Затем происходит взрыв.

Далее существует два варианта развития событий. Если оставшееся ядро весило меньше, чем три Солнца, оно превратится в нейтронную звезду. Объект будет вращаться и излучать радиоимпульсы. Если ядро было тяжелее трех солнечных масс, оно полностью разрушится, а на его месте образуется черная дыра.

Наиболее медленно происходит формирование звезд с небольшой массой. Дело в том, что они медленно тратят свои топливные запасы. Их жизненный путь длится от 100 миллиардов до 1 триллиона лет. Соответственно, такие объекты еще не умирали. Ведь установлено, что возраст Вселенной – 13,7 миллиардов лет. Красные карлики не могут слиться ни с чем, кроме водорода. Это приводит к тому, что они не способны увеличиваться в размерах. Такие светила будут медленно охлаждаться и со временем превратятся в черных карликов, после чего завершат свой жизненный путь.

Источник



Физическая природа звезд. Рождение звезды

Космос — звезды и планеты, галактики и туманности — огромный загадочный мир, понять который с древних времен хотят люди. Сначала астрология, а затем и астрономия стремились познать законы протекающей на его просторах жизни. Сегодня можно смело говорить, что нам известно многое, но внушительная часть процессов и явлений имеет лишь предположительное объяснение. Физическая природа звезд — один из широко обсуждаемых вопросов в астрономии. Сегодня в целом картина ясна, однако остаются и пробелы в наших знаниях о небесных светилах.

физическая природа звезд

Бесчисленное количество

Любая звезда представляет собой газовый шар, постоянно испускающий свет. Силы гравитации и внутреннего давления предотвращают его разрушение. Физическая природа звезд такова, что в ее недрах постоянно протекают термоядерные реакции. Они прекращаются лишь на определенных стадиях развития светила, о чем будет сказано ниже.

яркая звезда

При хороших погодных условиях и отсутствии искусственного освещения на небе можно разглядеть до 3000 тысяч звезд в каждом полушарии. Однако это лишь малая часть того количества, что наполняет космос. Самая близкая к нам звезда — это Солнце. Изучая его поведение, ученые очень многое узнают о светилах вообще. Наиболее близкая звезда вне Солнечной системы — Проксима Центавра. Ее отделяет от нас примерно 4,2 световых года.

Параметры

Наука о звездах знает сегодня достаточно, чтобы понимать, как влияют на их эволюцию основные характеристики. Наиболее важными параметрами для любого светила являются масса и состав. Они определяют продолжительность существования, особенности прохождения разных этапов и все прочие характеристики, например, спектр, размер, блеск. Однако в силу огромного расстояния, отделяющего нас от всех звезд, кроме Солнца, не всегда есть возможность получить точные данные о них.

Масса

В современных условиях более или менее точные данные о массе звезд можно получить только в том случае, если они являются компаньонами двойной системы. Однако и такие вычисления дают достаточно высокую погрешность — от 20 до 60%. Для остальных звезд масса вычисляется косвенно. Ее выводят из различных известных соотношений (например, масса — светимость).

Физическая природа звезд с изменением этого параметра остается прежней, но многие процессы начинают течь в несколько иной плоскости. Масса непосредственно влияет на тепловое и механическое равновесие всего космического тела. Чем она больше, тем значительнее газовое давление и температура в центре звезды, а также количество вырабатываемой термоядерной энергии. Для поддержания теплового равновесия светило должно излучить столько же, сколько образовалось в его недрах. Для этого происходит изменение диаметра звезды. Подобные изменения продолжаются, пока не установятся оба типа равновесия.

Химический состав

Основа звезды — это водород и гелий. Кроме них, в состав в разном соотношении входят и более тяжелые элементы. «Полный набор» свидетельствует о возрасте и поколении светила, указывает на некоторые другие его свойства.

Процентное содержание более тяжелых элементов крайне мало, однако именно они влияют на скорость протекания термоядерного синтеза. Его замедление и ускорение отражается на яркости, цвете и продолжительности жизни светила. Знание химического состава звезды позволяет без труда определить время ее образования.

Рождение звезды

рождение звезды

Процесс формирования светил еще недостаточно изучен. Полному пониманию картины мешают огромные расстояния и невозможность непосредственного наблюдения. Однако сегодня существует общепринятая концепция, описывающая рождение звезды. Кратко остановимся на ней.

По-видимому, светила образуются из межзвездного газа, сжимающегося под действием собственной гравитации. При этом энергия тяготения преобразуется в тепло — растет температура сформировавшейся глобулы. Завершается этот процесс, когда ядро разогревается до нескольких миллионов Кельвинов и запускается образование более тяжелых, чем водород, элементов (нуклеосинтез). Такой звезда остается достаточно длительное время, располагаясь на Главной последовательности диаграммы Герцшпрунга-Рассела.

Красный гигант

 наука о звездах

Следующий этап эволюции начинается после исчерпания ядром всего топлива. Весь водород в центре звезды превращается в гелий и его горение продолжается во внешних оболочках светила. Космическое тело начинает изменяться. Увеличивается его светимость, внешние слои расширяются, а внутренние, наоборот, сжимаются, временно снижается яркость, падает температура поверхности. Звезда сходит с Главной последовательности и становится красным гигантом. В таком состоянии светило проводит гораздо меньшее время своей жизни, чем на предыдущей стадии.

Необратимые изменения

Вскоре (по космическим меркам) ядро снова начинает сжиматься, не выдерживая собственного веса. Возрастающая температура при этом стимулирует начало синтеза из гелия более тяжелых элементов. На таком топливе звезда также может просуществовать достаточно долго. Дальнейшие события зависят от первоначальных параметров светила. Массивные звезды проходят еще несколько стадий, когда в качестве топлива начинает выступать сначала углерод (образовался из гелия), а затем кремний (образовался из углерода). В результате переработки последнего образуется железо. К этому моменту наступает завершающая стадия жизни звезды, когда она может преобразоваться в нейтронную. Однако большинство светил после выгорания всего водорода в красном гиганте превращаются в белых карликов.

 космос звезды и планеты

Не такие уж новые

Нужно заметить, что не всякая яркая звезда, внезапно загоревшаяся на небе, является «новорожденной». Как правило, это так называемая переменная — светило, чей блеск со временем изменяется. Объекты, обозначаемые в астрономии как «новая звезда», также не относятся к только что появившимся телам. Они относятся к катаклизмическим переменным, достаточно резко меняющим свой блеск. Однако сверхновые их в этом значительно опережают: амплитуда изменения у них может составлять до 9 величин. Впрочем, оба эти типа светил — тема для отдельных статей.

новая звезда

Физическая природа звезд во многом сегодня понятна, хотя нет гарантии, что новые данные не опровергнут устоявшиеся теории. Принятые гипотезы и идеи доминируют в науке лишь до того момента, пока могут объяснить наблюдаемые феномены. Каждая новая звезда, обнаруженная на просторах Вселенной, выявляет нерешенные задачи астрономии. Существующее понимание космических процессов далеко не полно, в нем есть достаточно обширные пробелы, касающиеся, например, процесса формирования черных дыр, сверхновых и так далее. Однако, независимо от состояния теории, небесные светила продолжают радовать нас по ночам. В сущности, яркая звезда не перестанет быть прекрасной, если мы полностью познаем ее природу. Или же, наоборот, прекратим всякое изучение.

Источник

Виды звезд

Звёзды – горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце – типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к Земле. Даже ближайшая звезда (Проксима Кентавра) в 272 000 раз дальше от Земли, чем Солнце, поэтому звезды кажутся нам светлыми точками на небе. Хотя звезды рассыпаны по всему небосводу, мы видим их только ночью, а днем на фоне яркого рассеянного в воздухе солнечного света они не видны.

Оглавление
Файлы: 1 файл

реферат.doc

1.2. Пекулярные и магнитные звёзды…………………………………………. 5

2. Источники энергии звезд…….…………………………………………. ……… .9

Звёзды – горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце – типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к Земле. Даже ближайшая звезда (Проксима Кентавра) в 272 000 раз дальше от Земли, чем Солнце, поэтому звезды кажутся нам светлыми точками на небе. Хотя звезды рассыпаны по всему небосводу, мы видим их только ночью, а днем на фоне яркого рассеянного в воздухе солнечного света они не видны.

Живя на поверхности Земли, мы находимся на дне воздушного океана, который непрерывно волнуется и бурлит, преломляя лучи света звезд, отчего они кажутся нам мигающими и дрожащими. Космонавты на орбите видят звезды как цветные немигающие точки.

Многие века звездное небо вдохновляло людей; это нашло отражение в литературе и религии. Все планеты движутся приблизительно в одной плоскости, их наблюдаемые с Земли траектории проходят на небе вдоль узкой полосы, называемой Зодиаком. Поэтому расположенные вдоль Зодиака созвездия – Телец, Овен и др. – в прежние времена считались особенно важными.

Многие храмы были ориентированы по звездам. Скажем, Великие пирамиды в Гизе построены так, что узкий коридор в них направлен точно на полярную звезду. Мегалитическая постройка Стоунхендж на Солсберийской равнине в Англии сооружена в точном соответствии с сезонными изменениями положения Солнца и Луны.

В нашу эпоху звезды часто используют как яркие метки на небе для определения времени и для навигации. Поскольку Земля вращается, каждый наблюдатель замечает, как звезды поочередно пересекают воображаемую линию север-зенит-юг (небесный меридиан). Это явление применяют для отсчета звездного времени. За начало новых звездных суток на всей Земле принят момент пересечения определенной точкой небесной сферы меридиана Гринвича в Англии.

В настоящее время известно, что звезды – это гигантские природные генераторы энергии, с высокой эффективностью превращающие часть своего вещества в излучение. В последние десятилетия было окончательно установлено, как формируются звезды. Это происходит в тех областях пространства, где собирается достаточно большая масса межзвездного газа, который под действием собственного тяготения сжимается и разогревается до тех пор, пока температура не достигнет критического значения, необходимого для протекания ядерных реакций. Свойства образовавшейся звезды практически полностью определяются массой исходного газового облака.

Большая часть звёзд входит в состав двойных или кратных звёздных систем. Если компоненты двойных звёзд расположены достаточно далеко друг от друга, они видны отдельно. Это так называемые визуально-двойные звёзды. Иногда один, более слабый, компонент не виден, и двойственность обнаруживается по непрямолинейному движению более яркой звезды. Чаще же всего двойные звёзды распознаются по периодическому расщеплению линий в спектре (спектрально-двойные звёзды) или по характерным изменениям блеска (затменно-двойные звёзды). Большая часть двойных звёзд образует тесные пары. На эволюцию компонентов таких звёзд существенное влияние оказывают взаимные приливные возмущения. Если один из компонентов звёзд вздувается в процессе эволюции, то при некоторых условиях из точки её поверхности, обращенной к др. компоненту, начинается истечение газа. Газ образует потоки вокруг второго компонента и частично попадает на него. В результате первый компонент может потерять большую часть массы и превратиться в субгиганта или даже в белого карлика. Второй же компонент приобретает часть потерянной массы и соответственно увеличивает светимость. Поскольку эта масса может включать газ не только из атмосферы, но и из глубоких слоев, близких к ядру первого компонента, в двойной звезде могут наблюдаться аномалии химического состава. Однако эти аномалии касаются только лёгких элементов, т.к. тяжёлые элементы в гигантах не образуются. Они появляются при взрывах сверхновых звёзд, когда выделяется много нейтронов, которые захватываются ядрами атомов и увеличивают их вес.

Пекулярные и магнитные звёзды

Аномалии химического состава, причём различные в разных местах поверхности звёзд, особенно часто наблюдаются у т. н. магнитных звёзд. Эти звёзды, спектральный класс которых близок к АО, имеют на поверхности магнитные поля с очень высокой напряжённостью (до 10 000 гаусс и больше). Напряжённость поля периодически меняется со средним периодом от 4 до 9 суток, причём часто изменяется и знак напряжённости. С этим же периодом обычно меняется и характер спектра, как если бы менялся химический состав звёзд. Такие изменения могут быть объяснены вращением звезды, имеющей два или несколько магнитных полюсов, не совпадающих с полюсом вращения. Изменения химического состава при этом объясняются тем, что на магнитном полюсе сосредоточено больше одних элементов, а на магнитном экваторе — других. У разных пекулярных (особых) звёзд, характеризующихся наиболее существенными особенностями химического состава, аномалии могут быть разными: чаще всего наблюдается большой избыток отдельных элементов типа Si, Mg, Cr, Eu, Mn и некоторых др. и недостаток Не. Появление этих аномалий обусловлено, по-видимому, тем, что сильное магнитное поле подавляет конвекцию. При отсутствии перемешивания происходит медленная диффузия элементов под действием силы тяжести и давления радиации. Одни элементы опускаются вниз, другие поднимаются вверх, в результате чего на поверхности наблюдается недостаток первых и избыток вторых. Магнитные звёзды вращаются медленнее, чем нормальные звёзды того же класса. Это является результатом того, что магнитное поле тормозило вращение сжимающегося сгустка вещества, из которого впоследствии сформировалась звезда.

Кроме обычных пекулярных звёзд имеются т. н. звёзды с металлическими линиями поздних спектральных подклассов А. У них также есть магнитное поле, но более слабое, и аномалии химического состава не так велики. Природа таких звёзд пока не изучена.

Некоторые типы аномалий, например обилие Li, связаны с дроблением более тяжёлых ядер космическими лучами, образующимися на самой З. в результате электромагнитных явлений, сходных с хромосферными вспышками. Такие аномалии наблюдаются, например, у ещё сжимающихся звёзд типа Т Тельца, с сильной конвекцией.

Аномалии др. вида, наблюдаемые, например, у гигантов спектрального класса S, обусловлены тем, что глубокая поверхностная конвективная зона смыкается с центральной конвективной зоной, что вызывается усилением ядерных реакций на определённом этапе эволюции звёзд. В результате вещество всей звезды перемешивается, и наружу выносятся элементы, синтезированные в её центральных областях.

Блеск многих звёзд непостоянен и изменяется в соответствии с тем или иным законом; такие звёзды называются переменными звёздами. Звёзды, у которых изменения блеска связаны с физическими процессами, происходящими в них самих, представляют собой физические переменные звёзды (в отличие от оптических переменных звёзд, к числу которых относятся затменно-двойные звёзды). Периодическая и полупериодическая переменность связана обычно с пульсациями звёзд, а иногда с крупномасштабной конвекцией. Звёздам как системам, находящимся в устойчивом равновесии, свойственны пульсации с собственными периодами. Колебания могут возникнуть в процессе перестройки структуры звезды, связанной с эволюционными изменениями. Однако, чтобы они не затухали, должен существовать механизм, поддерживающий или усиливающий их: в период максимального сжатия звёзд необходимо получить тепловую энергию, которая уйдёт наружу в период расширения. Согласно современным теориям, пульсации у многих типов переменных звёзд (цефеиды, переменные типа RR Лиры и др.) объясняются тем, что при сжатии звёзд увеличивается коэффициент поглощения; это задерживает общий поток излучения, и газ получает дополнительную энергию. При расширении поглощение уменьшается, и энергия выходит наружу. Неоднородное строение звёзд, наличие в них нескольких слоев с различными свойствами нарушает регулярную картину, делает изменения параметров звёзд отличными от правильной синусоиды. Основная стоячая волна колебания часто находится в глубине звёзд, а на поверхность выходят порождаемые ею бегущие волны, которые влияют на фазы изменений блеска, скорости и др. параметров.

Некоторые виды переменных звёзд испытывают вспышки, при которых блеск возрастает на 10-15 звёздных величин (т. н. новые звёзды), на 7-8 величин (повторные новые звёзды) или на 3-4 величины (новоподобные). Такие вспышки связаны с внезапным расширением фотосферы с большими скоростями (до 1000-2000 км/сек у новых звёзд), что приводит к выбросу оболочки с массой около 10 -5 -10 -4 масс Солнца. После вспышки блеск начинает уменьшаться с характерным временем 50-100 суток. В это время продолжается истечение газов с поверхности со скоростью в несколько тыс. км/сек. Все эти звёзды оказываются тесными двойными, и их вспышки, несомненно, связаны с взаимодействием компонентов системы, один из которых или оба обычно являются горячими звёздами-карликами. На структуру оболочек, выброшенных новыми звёздами, по-видимому, существенное влияние оказывает сильное магнитное поле звёзд. Быстрая неправильная переменность звёзд типа Т Тельца, UV Кита и некоторых др. типов молодых сжимающихся звёзд связана с мощными конвективными движениями в этих звёздах, выносящими на поверхность горячий газ. К переменным звёздам можно отнести и уже упоминавшиеся сверхновые звёзды. В Галактике известно свыше 30 000 переменных звёзд.

Источники энергии звезд

Наиболее очевидным свойством звезд является то, что они светятся, точнее, являются самосветящимися телами. За счет чего покрываются их энергетические потери? Этот вопрос возник, как только был сформулирован закон сохранения энергии, однако найти исчерпывающий ответ на него сумели лишь век спустя.

Обычно думают, что главная трудность проблемы – в огромной мощности выделения энергии на Солнце и звездах. В действительности дело вовсе не в этом. Удельный темп энерговыделения на Солнце и в звездах более чем скромный. Так, в расчете на один грамм своего вещества Солнце ежесекундно выделяет всего по 2 эрга. По обыденным земным меркам это совершенно ничтожный темп энерговыделения. В человеческом теле темп выделения энергии на четыре порядка выше, чем в Солнце. Однако чтобы поддерживать такой уровень производства энергии, нам нужно трижды в день есть. А Солнце (и звезды) светят миллиарды лет, не питаясь.

Итак, истинная проблема состоит в том, что звезды светят очень и очень долго. За это время они успевают высветить действительно огромные количества энергии. Откуда же она черпается?

Как уже говорилось, вопрос был поставлен в 40-е годы XIX века, с открытием закона сохранения энергии. Сразу же стало ясно, что источником энергии в принципе может быть гравитация. Так, Роберт Мейер, один из отцов закона сохранения энергии, полагал, что Солнце светится за счет кинетической энергии выпадающего на него метеорного вещества. Любопытно, что в течение многих десятилетий гипотеза Мейера считалась чуть ли не смехотворной и упоминалась лишь как исторический курьез. Однако теперь мы знаем, что модернизированный вариант механизма Мейера – аккреция – играет в мире звезд важную роль.

Другой пионер принципа сохранения энергии Герман Гельмгольц предположил, что свечение Солнца может поддерживаться его медленным вековым сжатием, что приводит, разумеется, к выделению гравитационной энергии. Вскоре вслед за Гельмгольцем Дж. Томсон (более известный как лорд Кельвин) уточнил его оценку времени такого сжатия, учтя неоднородность в распределении солнечного вещества вдоль радиуса. За счет такого, как мы теперь говорим, кельвиновского сжатия Солнце могло бы, заметно не меняясь, светить лишь десятки миллионов лет. Любопытно, что сам Кельвин, а вслед за ним и многие другие, рассматривали это как серьезный аргумент против правильности дарвиновских представлений о биологической эволюции, требовавшей по крайней мере на порядок больших времен. В конце XIX века вера в закон сохранения энергии была незыблема – а никакого другого источника энергии звезд, кроме самогравитации, видно не было. Правда, оценки возраста Земли, получавшиеся средствами геологии, давали по крайней мере сотни миллионов лет, что указывало на необходимость поиска какого-то дополнительного источника солнечной энергии.

Источник

Виды звезд

Звёзды – горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце – типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к Земле. Даже ближайшая звезда (Проксима Кентавра) в 272 000 раз дальше от Земли, чем Солнце, поэтому звезды кажутся нам светлыми точками на небе. Хотя звезды рассыпаны по всему небосводу, мы видим их только ночью, а днем на фоне яркого рассеянного в воздухе солнечного света они не видны.

Оглавление
Файлы: 1 файл

реферат.doc

1.2. Пекулярные и магнитные звёзды…………………………………………. 5

2. Источники энергии звезд…….…………………………………………. ……… .9

Звёзды – горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце – типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к Земле. Даже ближайшая звезда (Проксима Кентавра) в 272 000 раз дальше от Земли, чем Солнце, поэтому звезды кажутся нам светлыми точками на небе. Хотя звезды рассыпаны по всему небосводу, мы видим их только ночью, а днем на фоне яркого рассеянного в воздухе солнечного света они не видны.

Живя на поверхности Земли, мы находимся на дне воздушного океана, который непрерывно волнуется и бурлит, преломляя лучи света звезд, отчего они кажутся нам мигающими и дрожащими. Космонавты на орбите видят звезды как цветные немигающие точки.

Многие века звездное небо вдохновляло людей; это нашло отражение в литературе и религии. Все планеты движутся приблизительно в одной плоскости, их наблюдаемые с Земли траектории проходят на небе вдоль узкой полосы, называемой Зодиаком. Поэтому расположенные вдоль Зодиака созвездия – Телец, Овен и др. – в прежние времена считались особенно важными.

Многие храмы были ориентированы по звездам. Скажем, Великие пирамиды в Гизе построены так, что узкий коридор в них направлен точно на полярную звезду. Мегалитическая постройка Стоунхендж на Солсберийской равнине в Англии сооружена в точном соответствии с сезонными изменениями положения Солнца и Луны.

В нашу эпоху звезды часто используют как яркие метки на небе для определения времени и для навигации. Поскольку Земля вращается, каждый наблюдатель замечает, как звезды поочередно пересекают воображаемую линию север-зенит-юг (небесный меридиан). Это явление применяют для отсчета звездного времени. За начало новых звездных суток на всей Земле принят момент пересечения определенной точкой небесной сферы меридиана Гринвича в Англии.

В настоящее время известно, что звезды – это гигантские природные генераторы энергии, с высокой эффективностью превращающие часть своего вещества в излучение. В последние десятилетия было окончательно установлено, как формируются звезды. Это происходит в тех областях пространства, где собирается достаточно большая масса межзвездного газа, который под действием собственного тяготения сжимается и разогревается до тех пор, пока температура не достигнет критического значения, необходимого для протекания ядерных реакций. Свойства образовавшейся звезды практически полностью определяются массой исходного газового облака.

Большая часть звёзд входит в состав двойных или кратных звёздных систем. Если компоненты двойных звёзд расположены достаточно далеко друг от друга, они видны отдельно. Это так называемые визуально-двойные звёзды. Иногда один, более слабый, компонент не виден, и двойственность обнаруживается по непрямолинейному движению более яркой звезды. Чаще же всего двойные звёзды распознаются по периодическому расщеплению линий в спектре (спектрально-двойные звёзды) или по характерным изменениям блеска (затменно-двойные звёзды). Большая часть двойных звёзд образует тесные пары. На эволюцию компонентов таких звёзд существенное влияние оказывают взаимные приливные возмущения. Если один из компонентов звёзд вздувается в процессе эволюции, то при некоторых условиях из точки её поверхности, обращенной к др. компоненту, начинается истечение газа. Газ образует потоки вокруг второго компонента и частично попадает на него. В результате первый компонент может потерять большую часть массы и превратиться в субгиганта или даже в белого карлика. Второй же компонент приобретает часть потерянной массы и соответственно увеличивает светимость. Поскольку эта масса может включать газ не только из атмосферы, но и из глубоких слоев, близких к ядру первого компонента, в двойной звезде могут наблюдаться аномалии химического состава. Однако эти аномалии касаются только лёгких элементов, т.к. тяжёлые элементы в гигантах не образуются. Они появляются при взрывах сверхновых звёзд, когда выделяется много нейтронов, которые захватываются ядрами атомов и увеличивают их вес.

Пекулярные и магнитные звёзды

Аномалии химического состава, причём различные в разных местах поверхности звёзд, особенно часто наблюдаются у т. н. магнитных звёзд. Эти звёзды, спектральный класс которых близок к АО, имеют на поверхности магнитные поля с очень высокой напряжённостью (до 10 000 гаусс и больше). Напряжённость поля периодически меняется со средним периодом от 4 до 9 суток, причём часто изменяется и знак напряжённости. С этим же периодом обычно меняется и характер спектра, как если бы менялся химический состав звёзд. Такие изменения могут быть объяснены вращением звезды, имеющей два или несколько магнитных полюсов, не совпадающих с полюсом вращения. Изменения химического состава при этом объясняются тем, что на магнитном полюсе сосредоточено больше одних элементов, а на магнитном экваторе — других. У разных пекулярных (особых) звёзд, характеризующихся наиболее существенными особенностями химического состава, аномалии могут быть разными: чаще всего наблюдается большой избыток отдельных элементов типа Si, Mg, Cr, Eu, Mn и некоторых др. и недостаток Не. Появление этих аномалий обусловлено, по-видимому, тем, что сильное магнитное поле подавляет конвекцию. При отсутствии перемешивания происходит медленная диффузия элементов под действием силы тяжести и давления радиации. Одни элементы опускаются вниз, другие поднимаются вверх, в результате чего на поверхности наблюдается недостаток первых и избыток вторых. Магнитные звёзды вращаются медленнее, чем нормальные звёзды того же класса. Это является результатом того, что магнитное поле тормозило вращение сжимающегося сгустка вещества, из которого впоследствии сформировалась звезда.

Кроме обычных пекулярных звёзд имеются т. н. звёзды с металлическими линиями поздних спектральных подклассов А. У них также есть магнитное поле, но более слабое, и аномалии химического состава не так велики. Природа таких звёзд пока не изучена.

Некоторые типы аномалий, например обилие Li, связаны с дроблением более тяжёлых ядер космическими лучами, образующимися на самой З. в результате электромагнитных явлений, сходных с хромосферными вспышками. Такие аномалии наблюдаются, например, у ещё сжимающихся звёзд типа Т Тельца, с сильной конвекцией.

Аномалии др. вида, наблюдаемые, например, у гигантов спектрального класса S, обусловлены тем, что глубокая поверхностная конвективная зона смыкается с центральной конвективной зоной, что вызывается усилением ядерных реакций на определённом этапе эволюции звёзд. В результате вещество всей звезды перемешивается, и наружу выносятся элементы, синтезированные в её центральных областях.

Блеск многих звёзд непостоянен и изменяется в соответствии с тем или иным законом; такие звёзды называются переменными звёздами. Звёзды, у которых изменения блеска связаны с физическими процессами, происходящими в них самих, представляют собой физические переменные звёзды (в отличие от оптических переменных звёзд, к числу которых относятся затменно-двойные звёзды). Периодическая и полупериодическая переменность связана обычно с пульсациями звёзд, а иногда с крупномасштабной конвекцией. Звёздам как системам, находящимся в устойчивом равновесии, свойственны пульсации с собственными периодами. Колебания могут возникнуть в процессе перестройки структуры звезды, связанной с эволюционными изменениями. Однако, чтобы они не затухали, должен существовать механизм, поддерживающий или усиливающий их: в период максимального сжатия звёзд необходимо получить тепловую энергию, которая уйдёт наружу в период расширения. Согласно современным теориям, пульсации у многих типов переменных звёзд (цефеиды, переменные типа RR Лиры и др.) объясняются тем, что при сжатии звёзд увеличивается коэффициент поглощения; это задерживает общий поток излучения, и газ получает дополнительную энергию. При расширении поглощение уменьшается, и энергия выходит наружу. Неоднородное строение звёзд, наличие в них нескольких слоев с различными свойствами нарушает регулярную картину, делает изменения параметров звёзд отличными от правильной синусоиды. Основная стоячая волна колебания часто находится в глубине звёзд, а на поверхность выходят порождаемые ею бегущие волны, которые влияют на фазы изменений блеска, скорости и др. параметров.

Некоторые виды переменных звёзд испытывают вспышки, при которых блеск возрастает на 10-15 звёздных величин (т. н. новые звёзды), на 7-8 величин (повторные новые звёзды) или на 3-4 величины (новоподобные). Такие вспышки связаны с внезапным расширением фотосферы с большими скоростями (до 1000-2000 км/сек у новых звёзд), что приводит к выбросу оболочки с массой около 10 -5 -10 -4 масс Солнца. После вспышки блеск начинает уменьшаться с характерным временем 50-100 суток. В это время продолжается истечение газов с поверхности со скоростью в несколько тыс. км/сек. Все эти звёзды оказываются тесными двойными, и их вспышки, несомненно, связаны с взаимодействием компонентов системы, один из которых или оба обычно являются горячими звёздами-карликами. На структуру оболочек, выброшенных новыми звёздами, по-видимому, существенное влияние оказывает сильное магнитное поле звёзд. Быстрая неправильная переменность звёзд типа Т Тельца, UV Кита и некоторых др. типов молодых сжимающихся звёзд связана с мощными конвективными движениями в этих звёздах, выносящими на поверхность горячий газ. К переменным звёздам можно отнести и уже упоминавшиеся сверхновые звёзды. В Галактике известно свыше 30 000 переменных звёзд.

Источники энергии звезд

Наиболее очевидным свойством звезд является то, что они светятся, точнее, являются самосветящимися телами. За счет чего покрываются их энергетические потери? Этот вопрос возник, как только был сформулирован закон сохранения энергии, однако найти исчерпывающий ответ на него сумели лишь век спустя.

Обычно думают, что главная трудность проблемы – в огромной мощности выделения энергии на Солнце и звездах. В действительности дело вовсе не в этом. Удельный темп энерговыделения на Солнце и в звездах более чем скромный. Так, в расчете на один грамм своего вещества Солнце ежесекундно выделяет всего по 2 эрга. По обыденным земным меркам это совершенно ничтожный темп энерговыделения. В человеческом теле темп выделения энергии на четыре порядка выше, чем в Солнце. Однако чтобы поддерживать такой уровень производства энергии, нам нужно трижды в день есть. А Солнце (и звезды) светят миллиарды лет, не питаясь.

Итак, истинная проблема состоит в том, что звезды светят очень и очень долго. За это время они успевают высветить действительно огромные количества энергии. Откуда же она черпается?

Как уже говорилось, вопрос был поставлен в 40-е годы XIX века, с открытием закона сохранения энергии. Сразу же стало ясно, что источником энергии в принципе может быть гравитация. Так, Роберт Мейер, один из отцов закона сохранения энергии, полагал, что Солнце светится за счет кинетической энергии выпадающего на него метеорного вещества. Любопытно, что в течение многих десятилетий гипотеза Мейера считалась чуть ли не смехотворной и упоминалась лишь как исторический курьез. Однако теперь мы знаем, что модернизированный вариант механизма Мейера – аккреция – играет в мире звезд важную роль.

Другой пионер принципа сохранения энергии Герман Гельмгольц предположил, что свечение Солнца может поддерживаться его медленным вековым сжатием, что приводит, разумеется, к выделению гравитационной энергии. Вскоре вслед за Гельмгольцем Дж. Томсон (более известный как лорд Кельвин) уточнил его оценку времени такого сжатия, учтя неоднородность в распределении солнечного вещества вдоль радиуса. За счет такого, как мы теперь говорим, кельвиновского сжатия Солнце могло бы, заметно не меняясь, светить лишь десятки миллионов лет. Любопытно, что сам Кельвин, а вслед за ним и многие другие, рассматривали это как серьезный аргумент против правильности дарвиновских представлений о биологической эволюции, требовавшей по крайней мере на порядок больших времен. В конце XIX века вера в закон сохранения энергии была незыблема – а никакого другого источника энергии звезд, кроме самогравитации, видно не было. Правда, оценки возраста Земли, получавшиеся средствами геологии, давали по крайней мере сотни миллионов лет, что указывало на необходимость поиска какого-то дополнительного источника солнечной энергии.

Источник

Adblock
detector