4 2 1 Понятие о металлургии общие способы получения металлов

4.2.1. Понятие о металлургии: общие способы получения металлов.

Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д. В свободном виде встречаются металлы, расположенные в ряду напряжений правее водорода (Аg, Нg, Рt,Аu, Сu), хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.

Минералы и черные породы, содержащие металлы и их соединения, из которых выделение чистых металлов технически возможно и экономически целесообразно, называют рудами

Получение металлов из руд — задача металлургии.

Металлургия

— это и наука о промышленных способах получения металлов из руд, и отрасль промышленности.

Любой металлургический процесс — это процесс восстановления ионов металла с помощью различных восстановителей. Суть его можно выразить так:

Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы.

В соответствии с этим существуют следующие способы получения металлов:

Пирометаллургия

Пирометаллургия — восстановление металлов из руд при высоких температурах с помощью углерода, оксида углерода (II), водорода, металлов — алюминия, магния.

Например, олово восстанавливают из касситерита SnО2, а медь — из куприта Cu2O

прокаливанием с углем (коксом):

SnО2+ 2С = Sn + 2СО ↑; Cu2O + С = 2Cu+ СО ↑

Сульфидные руды предварительно подвергают обжигу при доступе воздуха, а затем полученный оксид восстанавливают углем:

2ZnS + 302 = 2ZnО + 2SO2 ↑; ZnО + С = Zn + СО ↑ сфалерит (цинковая обманка)

Из карбонатных руд металлы выделяют также путем прокаливания с углем, т. к. карбонаты при нагревании разлагаются, превращаясь в оксиды, а последние восстанавливаются углем:

FeСO3 = FеО + СO2 ↑ ; FеО + С = Fе + СО ↑ сидерит (шпатовый железняк)

Восстановлением углем можно получить Fе, Сu, Zn, Сd, Ge, Sn, Рb и другие металлы, не образующие прочных карбидов (соединений с углеродом).

В качестве восстановителя можно применять водород или активные металлы:

1) МоO3 + ЗН2 = Мо + ЗН2O (водородотермия)

К достоинствам этого метода относится получение очень чистого металла.

2) TiO2+ 2Мg = Тi + 2МgO (магнийтермия)

ЗМnO2 + 4Аl = ЗМn + 2Аl2O3 (алюминотермия)

Чаще всего в металлотермии используют алюминий, теплота образования оксида

которого очень велика (2А1 + 1,5 O2 = Аl2O3 + 1676 кДж/моль). Электрохимический ряд напряжений металлов нельзя использовать для определения возможности протекания реакций восстановления металлов из их оксидов. Приближенно установить возможность этого процесса можно на основании расчета теплового эффекта реакции (Q), зная значения теплот образования оксидов:

где Q1— теплота образования продукта, Q2 -теплота образования исходного вещества.

Доменный процесс (производство чугуна):

C + O2 = CO2, CO2 + C ↔ 2CO 3Fe2O3 + CO = 2(Fe2Fe32)O4+ CO2 (Fe2Fe32)O4+ CO= 3FeO + CO2 FeO + CO= Fe + CO2 (чугун содержит до 6,67% углерода в виде зерен графита и цементита Fe3C);

Выплавка стали

(0,2-2,06% углерода) проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева.

Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов.

При этом оксиды либо улавливаются в виде отходящих газов (CO2, SO2), либо связываются в легко отделяемый шлак – смесь Ca3(PO4)2 и CaSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Гидрометаллургия

Гидрометаллургия — это восстановление металлов из их солей в растворе.

Процесс проходит в два этапа: 1) природное соединение растворяют в подходящем реагенте для получения раствора соли этого металла; 2) из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом. Например, чтобы получить медь из руды, содержащей оксид меди СuО, ее обрабатывают разбавленной серной кислотой:

СuО + Н2SО4 = СuSO4 + Н2

Затем медь либо извлекают из раствора соли электролизом, либо вытесняют из сульфата железом:

СuSO4. + Fе = Сu + FеSO4

Таким образом, получают серебро, цинк, молибден, золото, уран.

Электрометаллургия

Электрометаллургия

— восстановление металлов в процессе электролиза растворов или расплавов их соединений.

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов.

Примеры: а) NaCl (электролиз расплава) → 2Na + Cl2

б) CaCl2 (электролиз расплава) → Ca + Cl↑ в) 2Al2O3(электролиз расплава) → 2Al + 3O2↑ г) 2Cr2(SO4) + 6H2O(электролиз) → 4Cr↓ + 3O2↑ +6H2SO4 д) 2MnSO4 + 2H2O (электролиз) → 2Mn↓ + O2↑+2H2SO4 е) FeCl2(электролиз раствора) → Fe↓ + Cl2↑

Что делают из железной руды? Что делают из железной руды? железо из чего делают

Пирометаллургия

Пи́рометаллу́ргия
— совокупность металлургических процессов, протекающих при высоких температурах. Это отрасль металлургии, связанная с получением и очищением металлов и металлических сплавов при высоких температурах, в отличие от гидрометаллургии, к которой относятся низкотемпературные процессы.

Описание[ | ]

Это химические процессы, протекающие в металлургических агрегатах при высоких (800—2000°С) температурах. Поэтому пирометаллургию иногда называют «химией высоких температур».

Часто химические реакции сопровождаются изменением агрегатного состояния реагирующих веществ: плавлением, возгонкой, испарением образующихся металлов или их соединений.

В таких процессах взаимодействия могут протекать между твёрдой, жидкой (расплавы) и газообразной фазами в любых сочетаниях.

Пирометаллургическими процессами являются процессы агломерации металлургического сырья, плавки шихтовых материалов, изготовления сплавов, рафинирования металлов. В частности, это — обжиг, доменная плавка, , плавка в конвертерах, дуговых и индукционных печах.Пирометаллургия — основа производства чугуна, стали, свинца, меди, цинка и др.

В пирометаллургии часто применяется восстановление углеродом — в тех случаях, когда восстанавливаемые металлы не образуют устойчивых карбидов, помимо указанных выше, к таким металлам относятся германий, кадмий, олово и другие. В случаях образования восстанавливаемыми металлами устойчивых карбидов вместо восстановления углеродом часто применяется металлотермия[1].

Пирометаллургия — основная и наиболее древняя область металлургии. С давних времён до конца 19 столетия производство металлов базировалось почти исключительно на пирометаллургических процессах.

На рубеже 19 и 20 столетий промышленное значение приобрела другая крупная ветвь металлургии — гидрометаллургия.

Однако пирометаллургия продолжает сохранять господствующее положение как по масштабам производства, так и по разнообразию процессов.

В начале 20 столетия вместе с пламенными способами нагрева в металлургии начали использоваться разные виды электрического нагрева (дуговой, индукционный и др.); приблизительно в это же время в промышленности был внедрён электролиз расплавленных химических соединений (производство алюминия и других цветных металлов).

Во 2-й половине 20 столетия получили распространение плазменная плавка металлов, зонная плавка и . Металлургические процессы, основанные на использовании электрического тока, выделяют в самостоятельную область пирометаллургии — электрометаллургию.

Основные процессы[ | ]

Основным процессом пирометаллургии является рудная плавка, которая проводится при таких высоких температурах, когда продукты химического взаимодействия расплавляются, образуя две жидкие фазы — металлическую или сульфидную и шлаковую. Различают восстановительную и окислительную плавки.

Определяющий процесс восстановительной рудной плавки — это восстановление оксидов металла с получением в конечном итоге расплава металла или его сплава с другими элементами. Типичной восстановительной плавкой является получение чугуна в доменных печах. Восстановительные процессы являются также главными при плавке марганцевых, окисленных никелевых, свинцовых, титановых руд.

Основными реагментами-восстановителями служат углерод, оксид углерода и водород. Оксид углерода образуется в самой печи при неполном горении углерода; основное количество водорода получается в результате разложения вдуваемого в печь природного газа.

Разновидностью восстановительных плавок является металлотермическое получение металлов, при котором в качестве восстановителя какого-то металла (Mn, Cr, V и др.) используется другой металл — с большим сродством к кислороду: Ca; Mg; Al, а также Si. Одним из достоинств металлотермического восстановления является получение металлов, не загрязненных углеродом или водородом.

Типичной окислительном рудной плавкой является переработка в шахтных печах богатых медных сульфидных руд. В ходе плавки окисляется основная доля серы сульфидных минералов, в результате чего выделяется значительное количество тепла. Основным целевым продуктом плавки является расплав сульфидов FeS и Cu2S — штейн.

Чугун и штейн рудных плавок являются, по-существу, полупродуктами, которые требуют дополнительной обработки. Такая обработка заключается в продувке расплавов воздухом или чистым кислородом, в результате чего содержащиеся в сплавах примеси окисляются и переходят либо в шлак (SiO2; MnO; FeO и др.), либо в газ (СО; SO2). Процесс называется конвертированием.

Аналогичным конвертированию является фьюминг-процесс — продувка газом шлаковых расплавов. Отличие его от конвертирования состоит в том, что металлический расплав продувают окислительным газом, а при фьюминговании шлака восстановительным.

А во-вторых, продукты окисления металлического расплава — оксиды металлов — образуют вторую жидкую фазу — шлак, а продукты фьюмингования шлака — восстановленные легколетучие металлы (или сульфиды) в парообразном состоянии удаляются из реакционного пространства газовым потоком[2].

Литература[ | ]

Промышленные способы получения металлов

Существует несколько способов получения металлов в промышленности. Их применение зависит от химической активности получаемого элемента и используемого сырья.

Некоторые металлы встречаются в природе в чистом виде, другие же требуют сложных технологических процедур для их выделения. Добыча одних элементов занимает несколько часов, другие же требуют многолетней обработки в особых условиях.

Общие способы получения металлов можно разделить на следующие категории: восстановление, обжиг, электролиз, разложение.

Есть также специальные методы получения редчайших элементов, которые подразумевают создание специальных условий в среде обработки.

Сюда может входить ионная декристаллизация структурной решетки или же наоборот, проведение контролируемого процесса поликристаллизации, которые позволяют получать определенный изотоп, радиоактивное облучение и другие нестандартные процедуры воздействия.

Они используются довольно редко ввиду высокой дороговизны и отсутствия практического применения выделенных элементов. Поэтому остановимся подробнее на основных промышленных способах получения металлов. Они довольно разнообразны, но все основаны на использовании химических или физических свойств определенных веществ.

Гидрометаллургия

Гидрометаллургия — это восстановление металлов из их солей в растворе.

Процесс проходит в два этапа: 1) природное соединение растворяют в подходящем реагенте для получения раствора соли этого металла; 2) из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом. Например, чтобы получить медь из руды, содержащей оксид меди СuО, ее обрабатывают разбавленной серной кислотой:

СuО + Н2SО4 = СuSO4 + Н2

Затем медь либо извлекают из раствора соли электролизом, либо вытесняют из сульфата железом:

СuSO4. + Fе = Сu + FеSO4

Таким образом, получают серебро, цинк, молибден, золото, уран.

Почему используют именно сплавы?

Технику производят из металлических материалов с многочисленными свойствами. Чистейшие и полученные различные способами металлы содержат в себе небольшие следы примесей, но не обладают нужными характеристиками. Чтобы добиться необходимых эксплуатационных свойств, используют сплавы. Они обладают необходимыми физическими свойствами и позволяют производить огромное количество разнообразных изделий. Сплавами называют однородные макроскопические материалы, которые являются двух- и многокомпонентными. Основная доля химических элементов приходится именно на металлы.

Сплавы отличаются собственной структурой. Все сплавы состоят из следующих компонентов:

  • основы — один либо большее количество металлов;
  • добавки — модифицирующие либо легирующие в небольшом количестве;
  • примеси — остаточные вещества природного, случайного либо технологического характера.

Конкретный состав уже обусловлен сплавом и конкретным производимым конечным изделием.

Изделия из металла

Подведение итогов

Металлы, которые используются в производстве различных изделий, не являются чистыми. Большинство добывают в виде руды. Она изымается в карьеры чаще всего подрывным способом и доставляется на перерабатывающий металлургический комбинат. Конкретный метод обработки зависит от разновидности руды. Получаемый в результате металл может быть условно чистейшим, поскольку содержит некоторое количество примесей. Это не делает его пригодным для производства конечных изделий, поскольку материал еще не обладает всеми необходимыми эксплуатационными свойствами. Для изготовления металлической продукции используют сплавы.

Электрометаллургия

Электрометаллургия

— восстановление металлов в процессе электролиза растворов или расплавов их соединений.

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов.

Примеры: а) NaCl (электролиз расплава) → 2Na + Cl2

б) CaCl2 (электролиз расплава) → Ca + Cl↑ в) 2Al2O3(электролиз расплава) → 2Al + 3O2↑ г) 2Cr2(SO4) + 6H2O(электролиз) → 4Cr↓ + 3O2↑ +6H2SO4 д) 2MnSO4 + 2H2O (электролиз) → 2Mn↓ + O2↑+2H2SO4 е) FeCl2(электролиз раствора) → Fe↓ + Cl2↑

Разработка месторождений

Существует несколько методов добычи руды. Применяют тот, который находят наиболее экономически целесообразным.

  • Открытый способ разработки – или карьерный. Рассчитан на неглубокое залегание минеральной породы. Для добычи выкапывают карьер глубиной до 500 м и шириной, зависящей от мощности месторождения. Железную руду извлекают из карьера и транспортируют машинами, рассчитанными на перевозку тяжелых грузов. Как правило, так добывают именно богатую руду, так что необходимости в ее обогащении не возникает.
  • Шахтный – при залегании породы на глубине 600–900 м, бурят шахты. Такая разработка куда более опасна, поскольку связана со взрывными подземными работами: обнаруженные пласты взрывают, а затем собранную руду транспортируют наверх. При всей своей опасности этот метод считается более эффективным.
  • Гидродобыча – в этом случае бурят скважины на определенную глубину. В шахту спускают трубы и подают воду под очень большим давлением. Водная струя дробит породу, а затем железную руду поднимают на поверхность. Скважинная гидродобыча мало распространена, так как требует больших затрат.

Далее рассмотрены технология, процессы изготовления железа.

Свойства руд

Отвечать на вопрос: какими свойствами обладает железная руда, не совсем просто. Хотя бы потому, что перечень свойств зависит от процента данного металла в руде и количества посторонних примесей. К примеру, красный железняк, содержащий гематит (Fe2O3), содержит в себе целых 70% железа от общего количества.

Что делают из железной руды?

В общем и целом, кстати, целесообразной добычей железа считается только та, где в рудах содержится от 40% железа и выше. Данная цифра действительно дает понять, что железо распространено в окружающем мире многократно больше других элементов. К примеру, для того же урана, содержание его в руде в количестве 2% считалось бы небывалой удачей…

Но вернемся к нашему красному железняку. Давая характеристику железной руде, можно сказать, что красный железняк представляет собой диапазон от порошкового вещества до плотного.

Лимонит (он же – бурый железняк), также является рудой железа, однако она представляет собой пористую и рыхлую породу, содержащую весомые доли фосфора и марганца. Пустой породой у него часто выступает глина. В силу чего, кстати, довольно легко поддается извлечению железа. Потому из него часто делают чугун.

Источник

Нахождение металлов в природе и общие способы их получения

Нахождение металлов в природе и общие способы их получения Нахождение металлов в природе и общие способы их получения Нахождение металлов в природе и общие способы их получения

Нахождение металлов в природе и общие способы их получения

  • Открытие металлов в природе и способы их получения в целом Быть на природе. Самым распространенным металлом в земной коре является алюминий. Далее следуют железо, кальций, натрий, калий, магний, титан(I, с. 38).
  • Содержание остальных металлов составляет negligible. So например, хрома в коре всего 0,3, никеля-0,2.А меди-0,01%. Металлы встречаются в природе как в виде свободных соединений, так и в виде различных соединений(схема 36). Рисунок 36 Найти металл в природе Четыре Я.

Благородный, свободный Хлорид: NaCI, KO, KO * NaCI, MgCl2,KO-MgCI2•6н20 сульфат: Na2S04 * GONA CaS04 * 2Н20, MgS04 * 7Н?0 нитрат: NaN03, KN03 ортофосфат: Ca3 (P04) 2 Карбонат: CaCO3, CaCOs * MgGQ » FeC03. Ca (NSOE)^ GS (HC03) 2 силикаты: А1203•2Si02 * 2H20,К20•А1203 * 6Si02 FcjOs• » Н20. Fe304. Sn02. Сг203, ЗНС, ПБС «ГС» Ag, Pt, Au Как его получить.

  • Наиболее активные металлы (Na, K, Ca, Mg) получают электролизом(стр. 83).Менее активные металлы восстанавливаются из оксидов углем, монооксидом углерода (II) или алюминием, а сульфиды металлов сжигаются первыми. Ниже приведен пример:

1.Восстановление оксидов металлов угля или монооксида углерода (II): f-I + 40 + 4 o Sn02 +CC02t + ЗП V3+ * 2 + 4 O FejOa + 3СОА-30202 + 2 Fe 2.Сжигание сульфидов металлов и последующее восстановление образующихся оксидов: 。 −2 «- » −2 2 ЗН Ы+ 10 2-* 2ZnO-Ф-2 С02 j— 4 2 0 + 2 0 ZnO + CACO + Zn 3.

Электролиз расплава. Чтобы получить представление о том, как производится этот металл (и другие вещества), необходимо ознакомиться с процессами, происходящими при электролизе.

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

Помощь студентам в учёбе

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник



Как добыть металл в природе

ХИМИЯ – это область чудес, в ней скрыто счастье человечества,

величайшие завоевания разума будут сделаны

именно в этой области.(М. ГОРЬКИЙ)

Таблица
Менделеева

Универсальная таблица растворимости

Коллекция таблиц к урокам по химии

Общая характеристика и способы получения металлов

Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д. В свободном виде встречаются металлы, расположенные в ряду напряжений правее водорода (Аg, Нg, Рt,Аu, Сu), хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.

Минералы и черные породы, содержащие металлы и их соединения, из которых выделение чистых металлов технически возможно и экономически целесообразно, называют рудами.

Получение металлов из руд — задача металлургии.

Металлургия — это и наука о промышленных способах получения металлов из руд, и отрасль промышленности.

Любой металлургический процесс — это процесс восстановления ионов металла с помощью различных восстановителей. Суть его можно выразить так:

Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы.

металлургия

В соответствии с этим существуют следующие способы получения металлов:

Пирометаллургия

Пирометаллургия — восстановление металлов из руд при высоких температурах с помощью углерода, оксида углерода (II), водорода, металлов — алюминия, магния.

Например, олово восстанавливают из касситерита SnО2, а медь — из куприта Cu2O

прокаливанием с углем (коксом):

SnО2+ 2С = Sn + 2СО ↑; Cu2O + С = 2Cu+ СО ↑

Сульфидные руды предварительно подвергают обжигу при доступе воздуха, а затем полученный оксид восстанавливают углем:

2ZnS + 302 = 2ZnО + 2SO2 ↑; ZnО + С = Zn + СО ↑
сфалерит (цинковая обманка)

Из карбонатных руд металлы выделяют также путем прокаливания с углем, т. к. карбонаты при нагревании разлагаются, превращаясь в оксиды, а последние восстанавливаются углем:

FeСO3 = FеО + СO2 ↑ ; FеО + С = Fе + СО ↑
сидерит (шпатовый железняк)

Восстановлением углем можно получить Fе, Сu, Zn, Сd, Ge, Sn, Рb и другие металлы, не образующие прочных карбидов (соединений с углеродом).

В качестве восстановителя можно применять водород или активные металлы:

К достоинствам этого метода относится получение очень чистого металла.

2) TiO2+ 2Мg = Тi + 2МgO (магнийтермия)

Чаще всего в металлотермии используют алюминий, теплота образования оксида

которого очень велика (2А1 + 1,5 O2 = Аl2O3 + 1676 кДж/моль). Электрохимический ряд напряжений металлов нельзя использовать для определения возможности протекания реакций восстановления металлов из их оксидов. Приближенно установить возможность этого процесса можно на основании расчета теплового эффекта реакции (Q), зная значения теплот образования оксидов:

где Q1— теплота образования продукта, Q2 -теплота образования исходного вещества.

Доменный процесс (производство чугуна):
C + O2 = CO2, CO2 + C ↔ 2CO
3Fe2O3 + CO = 2(Fe 2 Fe 3 2)O4+ CO2
(Fe 2 Fe 3 2)O4+ CO= 3FeO + CO2
FeO + CO= Fe + CO2
(чугун содержит до 6,67% углерода в виде зерен графита и цементита Fe3C);

доменный процесс чугун

Выплавка стали (0,2-2,06% углерода) проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (CO2, SO2), либо связываются в легко отделяемый шлак – смесь Ca3(PO4)2 и CaSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Гидрометаллургия

Гидрометаллургия — это восстановление металлов из их солей в растворе.

Процесс проходит в два этапа: 1) природное соединение растворяют в подходящем реагенте для получения раствора соли этого металла; 2) из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом. Например, чтобы получить медь из руды, содержащей оксид меди СuО, ее обрабатывают разбавленной серной кислотой:

Затем медь либо извлекают из раствора соли электролизом, либо вытесняют из сульфата железом:

Таким образом, получают серебро, цинк, молибден, золото, уран.

Электрометаллургия

Электрометаллургия — восстановление металлов в процессе электролиза растворов или расплавов их соединений.

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов.

электролиз

Примеры:
а) NaCl (электролиз расплава) → 2Na + Cl2

Источник

Получение металлов. Нахождение их в природе

Ребята, сегодня мы побываем с вами в местах, где получают металлы, а также узнаем, где же встречаются металлы.

Ну что ж, начинаем путешествие. Металлы встречаются в природе в свободном состоянии, их называют самородными металлами, так и в виде соединений.

В самородном состоянии в природе встречаются золото, серебро, медь, платина и ртуть. Эти металлы обычно содержатся в небольших количествах в виде зёрен или вкраплений в горных породах. Изредка встречаются и довольно крупные куски металлов – самородки. Одним из самых больших месторождений чистого серебра был так называемый «серебряный тротуар» в Канаде. Он представлял собой глыбу почти чистого серебра длиной тридцать м, уходящую в землю на восемнадцать м. Выработка этого месторождения дала около двадцать т металла. А один из крупнейших самородков серебра весил почти сто девять кг. Самый крупный самородок меди весил четыреста двадцать т, а золота – сто двенадцать кг.

А вот распространённость химических элементов металлов в земной коре различна. К наиболее распространённым металлам относятся алюминий (7,45%), железо (4,20%), кальций (3,25%), натрий (2,40%), калий (2,35%) и магний (2,35%). Содержание других металлов в земной коре может составлять тысячные доли процента и ниже.

Некоторые историки считают, что упадок Римской империи был обусловлен массовым отравлением свинцом. Известно, что водопроводы Древнего Рима были из свинца. В свинцовых чанах хранили воду и вино. Попадая в человеческий организм, свинец вызывает поражение центральной нервной системы, приводит к изменению состава крови.

Многие металлы являются элементами, необходимыми для функционирования живых организмов. На долю ионов Na + , K + , Mg 2+ , Ca 2+ в организме человека приходится 99% всех ионов металлов.

К биологически наиболее значимым металлам относятся: K, Na, Mg, Ca, Fe, Cu, Co, Mn, Zn, Mo.

В земной коре металлы чаще всего встречаются в виде соединений: таких, как оксиды, силикаты, карбонаты, сульфиды и хлориды. Эти соединения входят в состав руд и минералов.

Рудой называют горную породу, получение из которой чистого металла экономически выгодно. В состав руды входят минералы и примеси в виде пустой породы. А минералы – это природные тела, имеющие определённый химический состав. Давайте с вами посмотрим названия и химический состав некоторых минералов.

Химический состав

Красный железняк (гематит)

Магнитный железняк (магнетит)

Железный колчедан (пирит)

Медный колчедан (халькопирит)

Свинцовый блеск (галенит)

К наиболее известным минералам относится пирит, или железный колчедан (FeS2), киноварь (HgS), малахит ((CuOH)2CO3). Пирит и киноварь используют в промышленности для получения соответствующих металлов, то есть железа и ртути, а малахит, как поделочный камень.

А теперь представьте, что на дне водоёмов тоже есть соединения металлов, эти отложения – конкреции – представляют собой грозди, клубни или лепёшки, густо усеивающие дно. Плоские озёрные и болотные конкреции величиной с мелкую монету были известны ещё в средние века, поэтому их и называли «копеечной рудой». В настоящее время железомарганцевые конкреции, покрывающие огромные площади на дне океанов, называют полезными ископаемыми XXI века. Это богатейший источник не только железа и марганца, но и кобальта, никеля, меди и молибдена.

Представьте себя геологом или минералогом, как же это увлекательно. Для этого сравним такие минералы, как красный, бурый и магнитный железняк.

Цвет красного железняка коричнево-красный, сам он прочный, плотный, если провести образцом руды по поверхности фарфоровой ступки, то он оставляет красно-коричневый след, не притягивается магнитом.

Бурый железяк имеет жёлто-коричневую окраску, сам прочный и плотный, не притягивается магнитом, оставляет на фарфоровой ступки жёлто-бурую полосу.

Магнитный железняк чёрного цвета, сам прочный и плотный, притягивается магнитом, оставляет чёрный цвет черты на поверхности фарфоровой ступки, имеет металлический блеск.

Здорово, получается, что минералы отличаются между собой окраской, магнитными свойствами, цветом черты и некоторыми другими показателями.

В современной технике широко используют более 75 металлов и многочисленные сплавы на их основе. Поэтому большое значение придаётся промышленным способам получения металлов из руд. Обычно перед получением металлов из руды её измельчают, потом предварительно обогащают – отделяют пустую породу, примеси. В результате образуется концентрат, служащий сырьём для металлургического производства. Затем обогащённую руду превращают в оксид и только после этого восстанавливают металл.

Металлургия – это наука о методах и процессах производства металлов из руд и других металлосодержащих продуктов, о получении сплавов и обработке металлов. В зависимости от метода получения металла из руды (концентрата) существует несколько видов металлургических производств.

Представьте, что из одной т медной руды можно получить шестнадцать кг концентрата и только четыре кг чистой меди.

Такая отрасль металлургии, как пирометаллургия занимается переработкой руд, она основана на химических реакциях, при чём они проходят при высоких температурах, ведь от греч. пирос, означает огонь.

Пирометаллургические процессы включают обжиг и плавку.

При обжиге сульфиды переводят в оксиды, а сера удаляется в виде оксида серы (IV). А затем из оксида восстанавливают металл. Полученный металл или сплав подвергают механической обработке, придают ему соответствующую форму. В процессе выделения металлов (плавке) из оксидов в качестве восстановителей используют углерод, оксид углерода (II), водород, кремний или более активные металлы.

Например, ещё древние металлурги для получения железа из его руд использовали в качестве восстановителя углерод. Но этот способ неудобен тем, что реакция между твёрдыми веществами идёт только в местах их соприкосновения.

В промышленных масштабах для получения железа, цинка и других цветных металлов из оксидов используют в качестве восстановителя оксид углерода (II).

Сейчас мы посмотрим, как получают чугун и сталь. Восстановление железа проводят в специальных вертикальных печах, называемых доменными, высотой до нескольких десятков метров и внутренним объёмом до 5000 м 3 . Они имеют стальной корпус, а изнутри выложены огнеупорным кирпичом. По характеру своей работы доменная печь – аппарат непрерывного действия. Сверху в печь подаётся твёрдое сырьё – шихта, представляющая собой смесь железной руды, кокса (переработанного угля), известняка и других добавок, а снизу вдувается подогретый или обогащённый кислородом воздух. В нижней части печи кокс сгорает в горячем воздухе, образуя углекислый газ.

Углекислый газ поднимается вверх в печи и взаимодействует с новыми порциями раскалённого кокса

с образованием оксида углерода (II).

В результате реакций СО с оксидом железа (III) образуется железо.

В доменном процессе получается железо с относительно большим (более 2%) содержанием углерода – чугун.

Чугун превращают в сталь, удаляя избыточный углерод путём окисления кислородом воздуха в специальных установках – мартеновский печах, конвертерах или электропечах.

Для получения некоторых металлов в качестве восстановителя используют водород.

В роли восстановителей можно также использовать более активные металлы, способные вытеснять другие металлы из их оксидов и солей. Этот способ получения металлов называется металлотермией. Если используют алюминий, то говорят об алюминотермии:

Восстановление железа методом алюминотермии до сих пор применяется при сварке рельсов.

Этот метод получения металлов был предложен русским учёным

Н.Н. Бекетовым.

Гидрометаллургия – это методы получения металлов, основанные на химических реакциях, происходящих в растворе. Гидрометаллургические процессы включают стадию перевода нерастворимых соединений металлов из руд в растворы, с последующим восстановительным выделением металлов из полученных растворов с помощью других металлов или электрического тока.

Электрометаллургия – методы получения металлов, основанные на электролизе, т.е. выделение металлов из растворов или расплавов их соединений с помощью постоянного электрического тока. Этот метод применяют для получения активных металлов – щелочных и щелочноземельных, алюминия, также для получения легированных сталей. С помощью этого метода, английский химик Г. Дэви впервые получил калий, натрий, барий и кальций.

Большое значение имеет микробиологический метод получения металлов. В этом методе используется жизнедеятельность некоторых бактерий. Так, тионовые бактерии способны переводить нерастворимые сульфиды в растворимые сульфаты. Бактериальный метод применяют для извлечения меди из её сульфидных руд. А затем полученный раствор сульфата меди (II) подаётся на гидрометаллургическую переработку. Кроме этого, учёные обнаружили, что некоторые микроводоросли и бактерии накапливают на своей поверхности отдельные металлы (например, золото) или их оксиды. Микроорганизм постепенно обрастает «шубой» из минеральных частиц, увеличивается в размерах в десятки раз, что позволяет легко выделить частицы из раствора.

При промышленном производстве металлов большое значение имеют вопросы охраны окружающей среды от загрязнений отходами производства. Охрана окружающей среды предусматривает, прежде всего, дезактивацию выбросов, например отходящих газов при выплавке чугуна. Здесь главную опасность представляет образующийся при переработке сернистых руд оксид серы (IV), который, попадая в атмосферу, может вызывать «кислотные дожди». Наряду с комплексным использованием сырья, строительством очистных сооружений, устройством замкнутых циклов водопользования с целью охраны окружающей среды необходимы вывод промышленных предприятий за городскую черту, создание лесозащитных вокруг городов и промышленных центров.

Таким образом, металлы встречаются в природе в виде соединений или в самородном состоянии. В земной коре металлы чаще всего встречаются в виде соединений: оксидов, силикатов, карбонатов, сульфидов, хлоридов. Эти соединения входят в состав руд и минералов. Для получения металлов из руд руду сначала измельчают, обогащают, переводят в оксид и только после этого восстанавливают металл. В качестве восстановителей используют C, CO, H2, Si или более активные металлы. Металлургия занимается получением металлов и их сплавов из руд. В зависимости от метода получения металла из руды существует несколько видов металлургических производств: пирометаллургия, гидрометаллургия и электрометаллургия.

Источник

Adblock
detector